|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
import torch |
|
from torch import Tensor, nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class GradMultiply(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x, scale): |
|
ctx.scale = scale |
|
res = x.new(x) |
|
return res |
|
|
|
@staticmethod |
|
def backward(ctx, grad): |
|
return grad * ctx.scale, None |
|
|
|
|
|
class SamePad(nn.Module): |
|
def __init__(self, kernel_size, causal=False): |
|
super().__init__() |
|
if causal: |
|
self.remove = kernel_size - 1 |
|
else: |
|
self.remove = 1 if kernel_size % 2 == 0 else 0 |
|
|
|
def forward(self, x): |
|
if self.remove > 0: |
|
x = x[:, :, : -self.remove] |
|
return x |
|
|
|
|
|
class Swish(nn.Module): |
|
def __init__(self): |
|
super(Swish, self).__init__() |
|
self.act = torch.nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
return x * self.act(x) |
|
|
|
|
|
class GLU_Linear(nn.Module): |
|
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True): |
|
super(GLU_Linear, self).__init__() |
|
|
|
self.glu_type = glu_type |
|
self.output_dim = output_dim |
|
|
|
if glu_type == "sigmoid": |
|
self.glu_act = torch.nn.Sigmoid() |
|
elif glu_type == "swish": |
|
self.glu_act = Swish() |
|
elif glu_type == "relu": |
|
self.glu_act = torch.nn.ReLU() |
|
elif glu_type == "gelu": |
|
self.glu_act = torch.nn.GELU() |
|
|
|
if bias_in_glu: |
|
self.linear = nn.Linear(input_dim, output_dim * 2, True) |
|
else: |
|
self.linear = nn.Linear(input_dim, output_dim * 2, False) |
|
|
|
def forward(self, x): |
|
|
|
x = self.linear(x) |
|
|
|
if self.glu_type == "bilinear": |
|
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2]) |
|
else: |
|
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2])) |
|
|
|
return x |
|
|
|
|
|
def gelu_accurate(x): |
|
if not hasattr(gelu_accurate, "_a"): |
|
gelu_accurate._a = math.sqrt(2 / math.pi) |
|
return ( |
|
0.5 * x * (1 + torch.tanh(gelu_accurate._a * (x + 0.044715 * torch.pow(x, 3)))) |
|
) |
|
|
|
|
|
def gelu(x: torch.Tensor) -> torch.Tensor: |
|
return torch.nn.functional.gelu(x.float()).type_as(x) |
|
|
|
|
|
def get_activation_fn(activation: str): |
|
"""Returns the activation function corresponding to `activation`""" |
|
|
|
if activation == "relu": |
|
return F.relu |
|
elif activation == "gelu": |
|
return gelu |
|
elif activation == "gelu_fast": |
|
warnings.warn( |
|
"--activation-fn=gelu_fast has been renamed to gelu_accurate" |
|
) |
|
return gelu_accurate |
|
elif activation == "gelu_accurate": |
|
return gelu_accurate |
|
elif activation == "tanh": |
|
return torch.tanh |
|
elif activation == "linear": |
|
return lambda x: x |
|
elif activation == "glu": |
|
return lambda x: x |
|
else: |
|
raise RuntimeError("--activation-fn {} not supported".format(activation)) |
|
|
|
|
|
def quant_noise(module, p, block_size): |
|
""" |
|
Wraps modules and applies quantization noise to the weights for |
|
subsequent quantization with Iterative Product Quantization as |
|
described in "Training with Quantization Noise for Extreme Model Compression" |
|
|
|
Args: |
|
- module: nn.Module |
|
- p: amount of Quantization Noise |
|
- block_size: size of the blocks for subsequent quantization with iPQ |
|
|
|
Remarks: |
|
- Module weights must have the right sizes wrt the block size |
|
- Only Linear, Embedding and Conv2d modules are supported for the moment |
|
- For more detail on how to quantize by blocks with convolutional weights, |
|
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks" |
|
- We implement the simplest form of noise here as stated in the paper |
|
which consists in randomly dropping blocks |
|
""" |
|
|
|
|
|
if p <= 0: |
|
return module |
|
|
|
|
|
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d)) |
|
|
|
|
|
is_conv = module.weight.ndim == 4 |
|
|
|
|
|
if not is_conv: |
|
assert ( |
|
module.weight.size(1) % block_size == 0 |
|
), "Input features must be a multiple of block sizes" |
|
|
|
|
|
else: |
|
|
|
if module.kernel_size == (1, 1): |
|
assert ( |
|
module.in_channels % block_size == 0 |
|
), "Input channels must be a multiple of block sizes" |
|
|
|
else: |
|
k = module.kernel_size[0] * module.kernel_size[1] |
|
assert k % block_size == 0, "Kernel size must be a multiple of block size" |
|
|
|
def _forward_pre_hook(mod, input): |
|
|
|
if mod.training: |
|
if not is_conv: |
|
|
|
weight = mod.weight |
|
in_features = weight.size(1) |
|
out_features = weight.size(0) |
|
|
|
|
|
mask = torch.zeros( |
|
in_features // block_size * out_features, device=weight.device |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features) |
|
|
|
else: |
|
|
|
weight = mod.weight |
|
in_channels = mod.in_channels |
|
out_channels = mod.out_channels |
|
|
|
|
|
if mod.kernel_size == (1, 1): |
|
mask = torch.zeros( |
|
int(in_channels // block_size * out_channels), |
|
device=weight.device, |
|
) |
|
mask.bernoulli_(p) |
|
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels) |
|
else: |
|
mask = torch.zeros( |
|
weight.size(0), weight.size(1), device=weight.device |
|
) |
|
mask.bernoulli_(p) |
|
mask = ( |
|
mask.unsqueeze(2) |
|
.unsqueeze(3) |
|
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1]) |
|
) |
|
|
|
|
|
mask = mask.to( |
|
torch.bool |
|
) |
|
s = 1 / (1 - p) |
|
mod.weight.data = s * weight.masked_fill(mask, 0) |
|
|
|
module.register_forward_pre_hook(_forward_pre_hook) |
|
return module |
|
|