tristayqc's picture
Update README.md
7159055 verified
metadata
license: apache-2.0
base_model: jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
  - cer
model-index:
  - name: my_zh_CN_asr_cv13_model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: zh-CN
          split: train
          args: zh-CN
        metrics:
          - name: Wer
            type: wer
            value: 0.375
          - name: Cer
            type: cer
            value: 0.0674

my_zh_CN_asr_cv13_model

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1614
  • Cer: 0.0674
  • Wer: 0.375

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.0489 249.002 1000 0.1566 0.0638 0.375
0.0224 499.002 2000 0.1614 0.0674 0.375

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1