trbeers's picture
Add new SentenceTransformer model.
f4971b5 verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:2036
  - loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
datasets: []
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: >-
      Proven ability to establish and lead complex projects and programs within
      a multilayered, hierarchical organization.
    sentences:
      - Managed multiple concurrent projects in a large healthcare organization
      - >-
        Assisted in project documentation without direct management
        responsibilities
      - Skilled in creating presentations using Microsoft PowerPoint
  - source_sentence: >-
      Experience in evaluating and planning projects to minimize scheduled
      overtime requirements.
    sentences:
      - Validated release packages and coordinated Salesforce release cycles
      - Oversaw daily housekeeping operations
      - Successfully managed facility renovation projects to reduce overtime
  - source_sentence: >-
      Candidates should have significant experience in a commercial construction
      environment, ideally with a minimum of 10 years in the field.
    sentences:
      - >-
        Built strong partnerships with cross-functional teams to deliver
        projects
      - over 12 years of experience managing commercial construction projects
      - 2 years of experience in residential construction
  - source_sentence: Possession of strong leadership skills in a Workday professional context.
    sentences:
      - 3 years of experience with cardiac mapping technologies
      - Managed Workday implementation projects and trained team members
      - Developed marketing strategies for new products
  - source_sentence: >-
      Ability to manage TikTok Shop setup and troubleshoot operational issues
      effectively.
    sentences:
      - Troubleshot various operational issues during the setup of a TikTok Shop
      - Handled customer support queries for social media platforms
      - Consistently maintained client trust through transparent communication
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on distilbert/distilroberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.7648934072908906
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7804762875391312
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7679148495261325
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.76763834201618
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7662522690859208
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7664213152704937
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.45916097674624634
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4523102899073801
            name: Spearman Dot
          - type: pearson_max
            value: 0.7679148495261325
            name: Pearson Max
          - type: spearman_max
            value: 0.7804762875391312
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.716782585664628
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7026933640919135
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7172025512970919
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6972416685539203
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7148825937289236
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6948642143635732
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.4194725128577338
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4186318420591598
            name: Spearman Dot
          - type: pearson_max
            value: 0.7172025512970919
            name: Pearson Max
          - type: spearman_max
            value: 0.7026933640919135
            name: Spearman Max

SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: distilbert/distilroberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("trbeers/distilroberta-base-nli-v0")
# Run inference
sentences = [
    'Ability to manage TikTok Shop setup and troubleshoot operational issues effectively.',
    'Troubleshot various operational issues during the setup of a TikTok Shop',
    'Handled customer support queries for social media platforms',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7649
spearman_cosine 0.7805
pearson_manhattan 0.7679
spearman_manhattan 0.7676
pearson_euclidean 0.7663
spearman_euclidean 0.7664
pearson_dot 0.4592
spearman_dot 0.4523
pearson_max 0.7679
spearman_max 0.7805

Semantic Similarity

Metric Value
pearson_cosine 0.7168
spearman_cosine 0.7027
pearson_manhattan 0.7172
spearman_manhattan 0.6972
pearson_euclidean 0.7149
spearman_euclidean 0.6949
pearson_dot 0.4195
spearman_dot 0.4186
pearson_max 0.7172
spearman_max 0.7027

Training Details

Training Dataset

Unnamed Dataset

  • Size: 2,036 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 16.49 tokens
    • max: 36 tokens
    • min: 7 tokens
    • mean: 12.04 tokens
    • max: 24 tokens
    • min: 5 tokens
    • mean: 9.27 tokens
    • max: 15 tokens
  • Samples:
    anchor positive negative
    Sensitivity to the needs of patients, families, and physicians to deliver compassionate care. worked closely with families to address patient concerns specialized in technical equipment management without direct patient contact
    Ability to lift 25 lbs. or more as required for handling athletic equipment. Handled and organized equipment, ensuring safe lifting of heavy items Coordinated scheduling for team practices and meetings
    The candidate should have significant development experience, preferably around 10 years. developed and implemented data architecture projects for a decade worked in customer service for 5 years
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 510 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 8 tokens
    • mean: 16.8 tokens
    • max: 37 tokens
    • min: 7 tokens
    • mean: 12.08 tokens
    • max: 21 tokens
    • min: 5 tokens
    • mean: 9.28 tokens
    • max: 16 tokens
  • Samples:
    anchor positive negative
    Qualified to provide personalized and friendly client interactions Assisted clients with inquiries and ensured a welcoming environment Conducted market research for product development
    Understanding of network architecture principles and design patterns is critical. Designed and implemented network architectures for cloud-based solutions Managed on-premises server infrastructure
    Knowledge of cloud technologies and their implications for customer engagement. Managed customer onboarding for cloud-based services Handled sales inquiries for software licenses
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - 0.6375 -
0.625 10 2.0178 0.7805 -
1.0 16 - - 0.7027

Framework Versions

  • Python: 3.10.11
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}