|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2036 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: google-bert/bert-base-uncased |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Proven ability to establish and lead complex projects and programs |
|
within a multilayered, hierarchical organization. |
|
sentences: |
|
- Managed multiple concurrent projects in a large healthcare organization |
|
- Assisted in project documentation without direct management responsibilities |
|
- Skilled in creating presentations using Microsoft PowerPoint |
|
- source_sentence: Experience in evaluating and planning projects to minimize scheduled |
|
overtime requirements. |
|
sentences: |
|
- Validated release packages and coordinated Salesforce release cycles |
|
- Oversaw daily housekeeping operations |
|
- Successfully managed facility renovation projects to reduce overtime |
|
- source_sentence: Candidates should have significant experience in a commercial construction |
|
environment, ideally with a minimum of 10 years in the field. |
|
sentences: |
|
- Built strong partnerships with cross-functional teams to deliver projects |
|
- over 12 years of experience managing commercial construction projects |
|
- 2 years of experience in residential construction |
|
- source_sentence: Possession of strong leadership skills in a Workday professional |
|
context. |
|
sentences: |
|
- 3 years of experience with cardiac mapping technologies |
|
- Managed Workday implementation projects and trained team members |
|
- Developed marketing strategies for new products |
|
- source_sentence: Ability to manage TikTok Shop setup and troubleshoot operational |
|
issues effectively. |
|
sentences: |
|
- Troubleshot various operational issues during the setup of a TikTok Shop |
|
- Handled customer support queries for social media platforms |
|
- Consistently maintained client trust through transparent communication |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on google-bert/bert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7481079446812986 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.7505186904322839 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7554763601200802 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.758901200634132 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7545320893124581 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7581291583714751 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6010864985986635 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5940811367263572 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7554763601200802 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.758901200634132 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7078369274551736 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6860532079702527 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7195614364247788 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6992090523383406 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7199683293098692 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.699729559217933 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.4876300833689144 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.47135994215107385 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7199683293098692 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.699729559217933 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("trbeers/bert-base-uncased-nli-v0") |
|
# Run inference |
|
sentences = [ |
|
'Ability to manage TikTok Shop setup and troubleshoot operational issues effectively.', |
|
'Troubleshot various operational issues during the setup of a TikTok Shop', |
|
'Handled customer support queries for social media platforms', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7481 | |
|
| **spearman_cosine** | **0.7505** | |
|
| pearson_manhattan | 0.7555 | |
|
| spearman_manhattan | 0.7589 | |
|
| pearson_euclidean | 0.7545 | |
|
| spearman_euclidean | 0.7581 | |
|
| pearson_dot | 0.6011 | |
|
| spearman_dot | 0.5941 | |
|
| pearson_max | 0.7555 | |
|
| spearman_max | 0.7589 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7078 | |
|
| **spearman_cosine** | **0.6861** | |
|
| pearson_manhattan | 0.7196 | |
|
| spearman_manhattan | 0.6992 | |
|
| pearson_euclidean | 0.72 | |
|
| spearman_euclidean | 0.6997 | |
|
| pearson_dot | 0.4876 | |
|
| spearman_dot | 0.4714 | |
|
| pearson_max | 0.72 | |
|
| spearman_max | 0.6997 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 2,036 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.23 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.39 tokens</li><li>max: 15 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------| |
|
| <code>Sensitivity to the needs of patients, families, and physicians to deliver compassionate care.</code> | <code>worked closely with families to address patient concerns</code> | <code>specialized in technical equipment management without direct patient contact</code> | |
|
| <code>Ability to lift 25 lbs. or more as required for handling athletic equipment.</code> | <code>Handled and organized equipment, ensuring safe lifting of heavy items</code> | <code>Coordinated scheduling for team practices and meetings</code> | |
|
| <code>The candidate should have significant development experience, preferably around 10 years.</code> | <code>developed and implemented data architecture projects for a decade</code> | <code>worked in customer service for 5 years</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 510 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 8 tokens</li><li>mean: 16.39 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.34 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.41 tokens</li><li>max: 16 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:-----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| <code>Qualified to provide personalized and friendly client interactions</code> | <code>Assisted clients with inquiries and ensured a welcoming environment</code> | <code>Conducted market research for product development</code> | |
|
| <code>Understanding of network architecture principles and design patterns is critical.</code> | <code>Designed and implemented network architectures for cloud-based solutions</code> | <code>Managed on-premises server infrastructure</code> | |
|
| <code>Knowledge of cloud technologies and their implications for customer engagement.</code> | <code>Managed customer onboarding for cloud-based services</code> | <code>Handled sales inquiries for software licenses</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|:-----:|:----:|:------:|:-----------------------:|:------------------------:| |
|
| 0 | 0 | - | 0.5931 | - | |
|
| 0.625 | 10 | 1.4252 | 0.7505 | - | |
|
| 1.0 | 16 | - | - | 0.6861 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.11 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.1 |
|
- Accelerate: 0.31.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |