Berserker
Browse files- README.md +1 -1
- Ratata.zip +2 -2
- Ratata/data +9 -9
- Ratata/policy.optimizer.pth +1 -1
- Ratata/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -817.34 +/- 267.34
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
Ratata.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a3d894d286ec2de451363c7cd3f5c8d54219b40110033975d1e608e0774a7ac
|
3 |
+
size 143430
|
Ratata/data
CHANGED
@@ -42,21 +42,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 1,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
-
"learning_rate": 0.
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,14 +69,14 @@
|
|
69 |
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
82 |
"ent_coef": 0.0,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 1,
|
45 |
+
"num_timesteps": 1003520,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1656151048.0537581,
|
51 |
+
"learning_rate": 0.0071,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz99FOO801qGhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgBVpTv52prkB62Q6/j9UtQHJrl71HAyi9AAAAAAAAAACUdJRiLg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVYZxN0gFgcCUhpRSlIwBbJRLU4wBdJRHQKnLJviLl3h1fZQoaAZoCWgPQwjChTyCO5SXwJSGlFKUaBVL3mgWR0Cp0ZBp5/smdX2UKGgGaAloD0MIowT9hT7Wg8CUhpRSlGgVS2toFkdAqdHYPqcEvHV9lChoBmgJaA9DCNFcp5HWGIPAlIaUUpRoFUtgaBZHQKnSGu4gA6x1fZQoaAZoCWgPQwhZT62+OhCEwJSGlFKUaBVLTmgWR0Cp0k4jB2wFdX2UKGgGaAloD0MIrWu0HOihnsCUhpRSlGgVTQIBaBZHQKnTDc4YJmd1fZQoaAZoCWgPQwhBgXfyiY2XwJSGlFKUaBVLy2gWR0Cp0524mTkidX2UKGgGaAloD0MIhgFLrpKYksCUhpRSlGgVS6loFkdAqdQQoPTXrnV9lChoBmgJaA9DCDmYTYChY37AlIaUUpRoFUtYaBZHQKnUSxUvPC51fZQoaAZoCWgPQwjBHhMpLaaYwJSGlFKUaBVLy2gWR0Cp1NkTpPhydX2UKGgGaAloD0MIOQ68Wq6MfcCUhpRSlGgVS1JoFkdAqdUOktVaOnV9lChoBmgJaA9DCGL4iJhK9KfAlIaUUpRoFU1UAWgWR0Cp1i9oN/e+dX2UKGgGaAloD0MISRCugEL4gsCUhpRSlGgVS2BoFkdAqdZtHavicXV9lChoBmgJaA9DCHNLqyER44LAlIaUUpRoFUtxaBZHQKnWtj4Hoox1fZQoaAZoCWgPQwhX6INlrBt7wJSGlFKUaBVLWmgWR0Cp1vGVzIV/dX2UKGgGaAloD0MIHThnROlJhMCUhpRSlGgVS1BoFkdAqdcmCiAUcnV9lChoBmgJaA9DCL+36c9+Q33AlIaUUpRoFUtUaBZHQKnXWz544ZN1fZQoaAZoCWgPQwjedqG5DnqCwJSGlFKUaBVLV2gWR0Cp15Gce8wpdX2UKGgGaAloD0MIbhlwltoWocCUhpRSlGgVS/loFkdAqdhNe6ZpjHV9lChoBmgJaA9DCMLCSZqfTITAlIaUUpRoFUtraBZHQKnYkoa1kUd1fZQoaAZoCWgPQwirQZjbfS1/wJSGlFKUaBVLT2gWR0Cp2MTLns9kdX2UKGgGaAloD0MI3C4014nsgsCUhpRSlGgVS2toFkdAqdkIkPczqXV9lChoBmgJaA9DCIBKlSjbcJHAlIaUUpRoFUuSaBZHQKnZZuhsZYR1fZQoaAZoCWgPQwgHeT2YlEp9wJSGlFKUaBVLW2gWR0Cp2aEkrwvydX2UKGgGaAloD0MImiSWlJtUgcCUhpRSlGgVS0hoFkdAqdnNwWFewHV9lChoBmgJaA9DCO1jBb9NjH3AlIaUUpRoFUtJaBZHQKnZ+3azu4R1fZQoaAZoCWgPQwhtPNhiN1GAwJSGlFKUaBVLaGgWR0Cp2kLJCBwudX2UKGgGaAloD0MIAyLElfPbfsCUhpRSlGgVS19oFkdAqdqBeLNwBHV9lChoBmgJaA9DCC5U/rU8VIHAlIaUUpRoFUtbaBZHQKnau/2TPjZ1fZQoaAZoCWgPQwi5ADRKdwSPwJSGlFKUaBVLi2gWR0Cp2xep4rz5dX2UKGgGaAloD0MIWhKgppYsecCUhpRSlGgVS1VoFkdAqdtNFKCg9XV9lChoBmgJaA9DCHi0ccTaioTAlIaUUpRoFUtyaBZHQKnbmA80UGp1fZQoaAZoCWgPQwhf7L340keSwJSGlFKUaBVLmGgWR0Cp3ASgoPTYdX2UKGgGaAloD0MIKZfGLzxXecCUhpRSlGgVS1JoFkdAqdw9qi48U3V9lChoBmgJaA9DCAyTqYIRenjAlIaUUpRoFUtjaBZHQKniH+d9Ujt1fZQoaAZoCWgPQwgB/FOqRFl5wJSGlFKUaBVLSmgWR0Cp4lME7nxKdX2UKGgGaAloD0MIem6hKxERjcCUhpRSlGgVS6poFkdAqeLHogV45nV9lChoBmgJaA9DCFMEOL27jZnAlIaUUpRoFUvQaBZHQKnjWv38GcF1fZQoaAZoCWgPQwhPkNju3i+XwJSGlFKUaBVL12gWR0Cp4/anaWX1dX2UKGgGaAloD0MImgmGc+1UhcCUhpRSlGgVS2hoFkdAqeQ8Rcu8LHV9lChoBmgJaA9DCMLZrWUSAJ3AlIaUUpRoFUvWaBZHQKnk1hWo3rF1fZQoaAZoCWgPQwhAwjBgaUmDwJSGlFKUaBVLU2gWR0Cp5QsXaakRdX2UKGgGaAloD0MITUwXYvWrh8CUhpRSlGgVS5RoFkdAqeVu98JD3XV9lChoBmgJaA9DCLX+lgAMzpjAlIaUUpRoFUu5aBZHQKnl7VBD5TJ1fZQoaAZoCWgPQwj7rZ0oiW2EwJSGlFKUaBVLaGgWR0Cp5i6isXBQdX2UKGgGaAloD0MILuQR3Gg4gMCUhpRSlGgVS1RoFkdAqeZn+n62v3V9lChoBmgJaA9DCIYdxqRfgoXAlIaUUpRoFUuGaBZHQKnmvxVAAyV1fZQoaAZoCWgPQwj+RGXDus+QwJSGlFKUaBVLi2gWR0Cp5xkqUeMidX2UKGgGaAloD0MI7gbRWhFnfcCUhpRSlGgVS0loFkdAqedF8LKFI3V9lChoBmgJaA9DCGuCqPuAI4HAlIaUUpRoFUtaaBZHQKnnfjz7MxJ1fZQoaAZoCWgPQwh40VeQhoSCwJSGlFKUaBVLWWgWR0Cp57WbgCOndX2UKGgGaAloD0MIhxbZzjc8jcCUhpRSlGgVS3doFkdAqegCcf/3nXV9lChoBmgJaA9DCHo3FhSGeoXAlIaUUpRoFUt8aBZHQKnoV+sHSnd1fZQoaAZoCWgPQwggelImtTWHwJSGlFKUaBVLd2gWR0Cp6KT4cm0FdX2UKGgGaAloD0MIo68gzZjkjcCUhpRSlGgVS6BoFkdAqekSY7aIvnV9lChoBmgJaA9DCPhsHRyMy4PAlIaUUpRoFUtSaBZHQKnpRmf5DZ11fZQoaAZoCWgPQwirs1pgT/Z+wJSGlFKUaBVLWWgWR0Cp6X9MCcPOdX2UKGgGaAloD0MIdlPKa8UfisCUhpRSlGgVS3RoFkdAqenJ8Sf16HV9lChoBmgJaA9DCIP3VbmwJ4bAlIaUUpRoFUtuaBZHQKnqEiW3Sa51fZQoaAZoCWgPQwibPGU1nRCDwJSGlFKUaBVLXWgWR0Cp6kzasZHedX2UKGgGaAloD0MIb7ckBwwUiMCUhpRSlGgVS4toFkdAqeqrc45tFnV9lChoBmgJaA9DCOUMxR0fmpTAlIaUUpRoFUvSaBZHQKnrQbx3FDR1fZQoaAZoCWgPQwhL6ZleQlqBwJSGlFKUaBVLUGgWR0Cp63PEjxCqdX2UKGgGaAloD0MIz2qBPcZsgMCUhpRSlGgVS2JoFkdAqeuz0xubZ3V9lChoBmgJaA9DCKAy/n0m44PAlIaUUpRoFUtwaBZHQKnr/eF+NLl1fZQoaAZoCWgPQwgz4gLQqNOHwJSGlFKUaBVLYWgWR0Cp7DyprDZUdX2UKGgGaAloD0MINuUK79LAgcCUhpRSlGgVS0xoFkdAqexy0ngHeXV9lChoBmgJaA9DCPAxWHFqTILAlIaUUpRoFUtLaBZHQKnyc0x/NJR1fZQoaAZoCWgPQwh0DMheDyWAwJSGlFKUaBVLfGgWR0Cp8smEPDpDdX2UKGgGaAloD0MIk+LjE9JyiMCUhpRSlGgVS2poFkdAqfNC1Z1V53V9lChoBmgJaA9DCPIlVHAYII7AlIaUUpRoFUukaBZHQKnzvbg0j1R1fZQoaAZoCWgPQwgxmL9C5n1/wJSGlFKUaBVLSGgWR0Cp8+u938oAdX2UKGgGaAloD0MIYAFMGfiye8CUhpRSlGgVS05oFkdAqfQiWLP2PHV9lChoBmgJaA9DCK5nCMfsIX7AlIaUUpRoFUtZaBZHQKn0YR02cax1fZQoaAZoCWgPQwgSaLCps9R/wJSGlFKUaBVLT2gWR0Cp9JheXzDodX2UKGgGaAloD0MIPbt866M/iMCUhpRSlGgVS3BoFkdAqfTkH+qBE3V9lChoBmgJaA9DCPTF3ovva3/AlIaUUpRoFUtYaBZHQKn1HhUBGQV1fZQoaAZoCWgPQwgew2M/u7iQwJSGlFKUaBVLlGgWR0Cp9YSY5T60dX2UKGgGaAloD0MIJUG4AirmmMCUhpRSlGgVS9hoFkdAqfYhsTFl1HV9lChoBmgJaA9DCKSJd4BnHZDAlIaUUpRoFUuTaBZHQKn2guDBdld1fZQoaAZoCWgPQwidgZGXtVWGwJSGlFKUaBVLbWgWR0Cp9s9B0ITodX2UKGgGaAloD0MIPbfQlegFicCUhpRSlGgVS35oFkdAqfcksH0K7nV9lChoBmgJaA9DCPOtD+tt+4PAlIaUUpRoFUtVaBZHQKn3X5Sm65J1fZQoaAZoCWgPQwg7p1mgrT2VwJSGlFKUaBVLt2gWR0Cp9+ZOSGJvdX2UKGgGaAloD0MIYtwNojUrf8CUhpRSlGgVS1JoFkdAqfgao4uK43V9lChoBmgJaA9DCAzKNJo8woLAlIaUUpRoFUtHaBZHQKn4ScrAgxJ1fZQoaAZoCWgPQwgTnWUWUc2QwJSGlFKUaBVLkmgWR0Cp+LFKsdT6dX2UKGgGaAloD0MInYGRl1UfisCUhpRSlGgVS3xoFkdAqfkFRHf/FXV9lChoBmgJaA9DCE57Ss5J3YTAlIaUUpRoFUtzaBZHQKn5T4Z/CqJ1fZQoaAZoCWgPQwg5l+KqsgaFwJSGlFKUaBVLi2gWR0Cp+atrKvFFdX2UKGgGaAloD0MIO6dZoO0/l8CUhpRSlGgVS8ZoFkdAqfo3xUedTnV9lChoBmgJaA9DCE5HADerb4PAlIaUUpRoFUtTaBZHQKn6bFUADJV1fZQoaAZoCWgPQwgH6/8cRhOFwJSGlFKUaBVLd2gWR0Cp+r1x0dR0dX2UKGgGaAloD0MIJNI2/lR2lsCUhpRSlGgVS8hoFkdAqftFhXr+pHV9lChoBmgJaA9DCP0Ux4GXaYvAlIaUUpRoFUt6aBZHQKn7lpFCswN1fZQoaAZoCWgPQwiHTs+78Sp8wJSGlFKUaBVLSWgWR0Cp+8YyfthNdX2UKGgGaAloD0MI2XdF8J/nicCUhpRSlGgVS3NoFkdAqfwTkXDWLHV9lChoBmgJaA9DCMnH7gLlQYXAlIaUUpRoFUtmaBZHQKn8VfP5YYB1fZQoaAZoCWgPQwhHWipvh5SMwJSGlFKUaBVLpmgWR0Cp/M1xbSqmdX2UKGgGaAloD0MIxqUqbRHbkMCUhpRSlGgVS6BoFkdAqf08qx1PnHVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 3680,
|
79 |
+
"n_steps": 4096,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
82 |
"ent_coef": 0.0,
|
Ratata/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3f5eb643e6f20f2e2bc92986335054afe1a60cb8192410ad888ae84553af7e5
|
3 |
size 84893
|
Ratata/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48fb3d67c5d3bb85c0080eb884ff4672ea948d624409273e5986dfc9bc5557cc
|
3 |
size 43201
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf06421830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf064218c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf06421950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf064219e0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf06421a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf06421b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf06421b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf06421c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf06421cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf06421d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf06421dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf0647d060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 501760, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656144965.8532536, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgQDSCvbQ+WD6IANY9O648vp8V5ryLQaS8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEOuNWmFFb0CUhpRSlIwBbJRNegGMAXSUR0CT03U+9rXUdX2UKGgGaAloD0MIuyU5YNeIbUCUhpRSlGgVTSEBaBZHQJPapQdjoZB1fZQoaAZoCWgPQwgSwqONI11vQJSGlFKUaBVNKQFoFkdAk9xklzEJjXV9lChoBmgJaA9DCNGVCFT/uWVAlIaUUpRoFU3sAWgWR0CT38qIJqqPdX2UKGgGaAloD0MIBi0kYHS5+L+UhpRSlGgVS+5oFkdAk+EXZXdTHnV9lChoBmgJaA9DCDG3e7lPUFdAlIaUUpRoFU3oA2gWR0CT7YD3M6ikdX2UKGgGaAloD0MIS6yMRj56Z0CUhpRSlGgVTSABaBZHQJPvKXa8HwB1fZQoaAZoCWgPQwhFuTR+4cUZwJSGlFKUaBVLvGgWR0CT8B2OhkAhdX2UKGgGaAloD0MIC/FIvLwPbECUhpRSlGgVTQYBaBZHQJPxpyfcvdx1fZQoaAZoCWgPQwi/8EqS58oiwJSGlFKUaBVL82gWR0CT8vfD1oQGdX2UKGgGaAloD0MIJxb4im7tFcCUhpRSlGgVS45oFkdAk/Ozslb/wXV9lChoBmgJaA9DCDij5qvkX2tAlIaUUpRoFU0mAWgWR0CT9XZlFtsOdX2UKGgGaAloD0MI+BbWjTeocECUhpRSlGgVS/JoFkdAk/bKBun/DXV9lChoBmgJaA9DCKTfvg6c101AlIaUUpRoFU3oA2gWR0CUBGNRWLgodX2UKGgGaAloD0MImdNlMbGZWkCUhpRSlGgVTegDaBZHQJQKDW4EwFl1fZQoaAZoCWgPQwjq7GRwFA9tQJSGlFKUaBVL52gWR0CUCzbT+ee4dX2UKGgGaAloD0MI1/oioa39bUCUhpRSlGgVTUgBaBZHQJQS2OinHed1fZQoaAZoCWgPQwhlGHeDKGhxQJSGlFKUaBVNNAFoFkdAlBSKWom5UnV9lChoBmgJaA9DCJJAg02dkzjAlIaUUpRoFUu5aBZHQJQVhhnanJl1fZQoaAZoCWgPQwivQPSkDOhwQJSGlFKUaBVNJQFoFkdAlBcmpuMuOHV9lChoBmgJaA9DCEERixh2G25AlIaUUpRoFU0eAWgWR0CUGLfRu0kXdX2UKGgGaAloD0MIVAJiEq6DaECUhpRSlGgVTSoBaBZHQJQabmwJPZZ1fZQoaAZoCWgPQwhCQpQv6BRuQJSGlFKUaBVNVwFoFkdAlBxa5wwTNHV9lChoBmgJaA9DCG+cFOY9HhFAlIaUUpRoFUukaBZHQJQiy43FUAF1fZQoaAZoCWgPQwgMWHIVyy5wQJSGlFKUaBVNEAFoFkdAlCRfeDWbw3V9lChoBmgJaA9DCJ9x4UBI511AlIaUUpRoFU3oA2gWR0CUKyWrwOOKdX2UKGgGaAloD0MIl445z5gGcECUhpRSlGgVS/9oFkdAlCyWza9K3HV9lChoBmgJaA9DCKOvIM3YxWlAlIaUUpRoFU14AWgWR0CULxEaVD8cdX2UKGgGaAloD0MIJ8Eb0qjAbUCUhpRSlGgVTQkBaBZHQJQ2K7mMfih1fZQoaAZoCWgPQwgptKz7x5VvQJSGlFKUaBVNNQFoFkdAlDgBfjS5RXV9lChoBmgJaA9DCJQSglX1rjDAlIaUUpRoFUuoaBZHQJQ46IWP91l1fZQoaAZoCWgPQwhagSGrW41dQJSGlFKUaBVN6ANoFkdAlEATrRjSX3V9lChoBmgJaA9DCHHl7J3RFhPAlIaUUpRoFUujaBZHQJRA6yE+Pil1fZQoaAZoCWgPQwgBpDZx8mJoQJSGlFKUaBVNhwFoFkdAlEjcnJDE33V9lChoBmgJaA9DCAcJUb6gUTBAlIaUUpRoFUuTaBZHQJRJoHfMwDh1fZQoaAZoCWgPQwg+XHLcaeNwQJSGlFKUaBVL+GgWR0CUSweeWfK7dX2UKGgGaAloD0MIDVTGv8+9b0CUhpRSlGgVTRUBaBZHQJRMkX2ugYh1fZQoaAZoCWgPQwgai6azE8RxQJSGlFKUaBVNPAFoFkdAlE5rULDyfHV9lChoBmgJaA9DCOW2fY86DHFAlIaUUpRoFUvwaBZHQJRPzABT4tZ1fZQoaAZoCWgPQwhhwf2AB+YTQJSGlFKUaBVL1WgWR0CUUO2OhkAhdX2UKGgGaAloD0MI48Yt5mevcECUhpRSlGgVTQ8BaBZHQJRSieHzpX91fZQoaAZoCWgPQwjtR4rIsEr/P5SGlFKUaBVLqmgWR0CUU2ihWYF8dX2UKGgGaAloD0MIYTjXMMMWcUCUhpRSlGgVTdMBaBZHQJRb7ZGrjo91fZQoaAZoCWgPQwgydsJL8C9rQJSGlFKUaBVNDAFoFkdAlF1362v0RXV9lChoBmgJaA9DCHZxGw3gcW5AlIaUUpRoFU0rAWgWR0CUXykpZwGXdX2UKGgGaAloD0MI/1nz4y9ZakCUhpRSlGgVTRoBaBZHQJRgvY4ACGN1fZQoaAZoCWgPQwh32ERmbqlwQJSGlFKUaBVNBwFoFkdAlGIrobGWEHV9lChoBmgJaA9DCOYHrvIEdjtAlIaUUpRoFUulaBZHQJRjDjvNNah1fZQoaAZoCWgPQwhcyvli78XJP5SGlFKUaBVLoGgWR0CUY+NPxhDxdX2UKGgGaAloD0MIR+S7lLq7bkCUhpRSlGgVS+doFkdAlGqbpaA4GXV9lChoBmgJaA9DCPmh0ohZyHFAlIaUUpRoFU06AWgWR0CUbHncclw+dX2UKGgGaAloD0MInzws1JpZWkCUhpRSlGgVTegDaBZHQJRzBpsXSBt1fZQoaAZoCWgPQwjQXn08dCNuQJSGlFKUaBVNMAFoFkdAlHS48EFGG3V9lChoBmgJaA9DCAqjWdk+vCrAlIaUUpRoFUu0aBZHQJR1uqm0mdB1fZQoaAZoCWgPQwgu46YGGhVhQJSGlFKUaBVN6ANoFkdAlII3wCr923V9lChoBmgJaA9DCAAeUaE6fG9AlIaUUpRoFUvaaBZHQJSDYzzmOlx1fZQoaAZoCWgPQwi1qE9yh4ZtQJSGlFKUaBVL82gWR0CUhL4eLehxdX2UKGgGaAloD0MI0LcFS3XPcECUhpRSlGgVTRMBaBZHQJSGWhM8HOd1fZQoaAZoCWgPQwigwDv59N9sQJSGlFKUaBVL6GgWR0CUh5xbjcVQdX2UKGgGaAloD0MIq7AZ4ALmbUCUhpRSlGgVS+toFkdAlIjkknkT6HV9lChoBmgJaA9DCEnajT5mYW1AlIaUUpRoFU0PAWgWR0CUj+hoduHfdX2UKGgGaAloD0MIb2OzI1U9aECUhpRSlGgVTQgBaBZHQJSRYxVQyh11fZQoaAZoCWgPQwjC24MQkBRxQJSGlFKUaBVNLQFoFkdAlJMTWf9P13V9lChoBmgJaA9DCGUXDK65b3BAlIaUUpRoFUvmaBZHQJSUZz3h4t91fZQoaAZoCWgPQwjfpj/7kTomQJSGlFKUaBVLoWgWR0CUlTpwS8J2dX2UKGgGaAloD0MIVHQklz9rcUCUhpRSlGgVTRQBaBZHQJSW2SPluFZ1fZQoaAZoCWgPQwhqwvaTMZ5sQJSGlFKUaBVNAAFoFkdAlJhEMCtA9nV9lChoBmgJaA9DCIaRXtRucGxAlIaUUpRoFU0UAWgWR0CUmfIF/x2CdX2UKGgGaAloD0MI1NLcCuFqbkCUhpRSlGgVTVABaBZHQJShqY4Qz1t1fZQoaAZoCWgPQwj68gLso9MJwJSGlFKUaBVLqmgWR0CUooxsl9jPdX2UKGgGaAloD0MIbcfUXdlUbkCUhpRSlGgVTQ0BaBZHQJSkBjiGWUt1fZQoaAZoCWgPQwh/LhoyXnZxQJSGlFKUaBVNBQFoFkdAlKV9sSCe3HV9lChoBmgJaA9DCF6dY0D2mhDAlIaUUpRoFUvUaBZHQJSmmUxEfDF1fZQoaAZoCWgPQwiygAncOt9vQJSGlFKUaBVL3mgWR0CUp8oL5RCQdX2UKGgGaAloD0MInuxmRj8XbkCUhpRSlGgVS+FoFkdAlKkA1R+BpnV9lChoBmgJaA9DCLraiv1lRGxAlIaUUpRoFU08AWgWR0CUqtTIvJzUdX2UKGgGaAloD0MIlugsswiCa0CUhpRSlGgVTRIBaBZHQJSyFR2r4nF1fZQoaAZoCWgPQwhwI2WLpBUvQJSGlFKUaBVLt2gWR0CUswhM8HObdX2UKGgGaAloD0MIhQt5BDf+MUCUhpRSlGgVS9toFkdAlLQz3h4t6HV9lChoBmgJaA9DCBKEK6BQgnFAlIaUUpRoFU0gAWgWR0CUtc8eS0SidX2UKGgGaAloD0MIxlBOtKuOcECUhpRSlGgVS/FoFkdAlLcpfICEH3V9lChoBmgJaA9DCHjy6bEtiyBAlIaUUpRoFUuqaBZHQJS4EcuJ1q51fZQoaAZoCWgPQwhMGM3K9gEawJSGlFKUaBVLgWgWR0CUuMD+R5kcdX2UKGgGaAloD0MIwqT4+ITEcECUhpRSlGgVTSsBaBZHQJS6ax/ustF1fZQoaAZoCWgPQwg0vi8uVSn2P5SGlFKUaBVL5mgWR0CUu7G1QZXNdX2UKGgGaAloD0MIlghU/6BMbUCUhpRSlGgVS+1oFkdAlMKYJJGvwHV9lChoBmgJaA9DCAvsMZHSQDtAlIaUUpRoFUvAaBZHQJTDmUFB6a91fZQoaAZoCWgPQwjfiVkvhqdZQJSGlFKUaBVN6ANoFkdAlMnH5vcafnV9lChoBmgJaA9DCAu45/nTfEhAlIaUUpRoFUvlaBZHQJTK/NliBoV1fZQoaAZoCWgPQwgRVmMJays9QJSGlFKUaBVL22gWR0CUzE4G2TgVdX2UKGgGaAloD0MI8FF/vYLhcECUhpRSlGgVTSQBaBZHQJTOlvddmg91fZQoaAZoCWgPQwh/bJIf8UhvQJSGlFKUaBVL+2gWR0CU1qXnyNGWdX2UKGgGaAloD0MIqYQn9Pq/U0CUhpRSlGgVTegDaBZHQJTd2q94/u91fZQoaAZoCWgPQwjr4GBv4i9xQJSGlFKUaBVNQwFoFkdAlN+vPPcBVHV9lChoBmgJaA9DCMGMKVjjFC7AlIaUUpRoFUvUaBZHQJTgxJvo/zJ1fZQoaAZoCWgPQwgIc7uX+yhZQJSGlFKUaBVN6ANoFkdAlO2prk8zRHV9lChoBmgJaA9DCI0OSMI+PnBAlIaUUpRoFU0FAWgWR0CU7yf4REncdX2UKGgGaAloD0MIP+QtVz86QcCUhpRSlGgVS/JoFkdAlPBptm+TNnV9lChoBmgJaA9DCI7NjlRf7G5AlIaUUpRoFU0TAWgWR0CU8fwIMSbpdX2UKGgGaAloD0MIup7ounCCcUCUhpRSlGgVTWkBaBZHQJTz7/Lkjop1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2940, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf06421830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf064218c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf06421950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf064219e0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf06421a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf06421b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf06421b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf06421c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf06421cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf06421d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf06421dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf0647d060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656151048.0537581, "learning_rate": 0.0071, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz99FOO801qGhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgBVpTv52prkB62Q6/j9UtQHJrl71HAyi9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVYZxN0gFgcCUhpRSlIwBbJRLU4wBdJRHQKnLJviLl3h1fZQoaAZoCWgPQwjChTyCO5SXwJSGlFKUaBVL3mgWR0Cp0ZBp5/smdX2UKGgGaAloD0MIowT9hT7Wg8CUhpRSlGgVS2toFkdAqdHYPqcEvHV9lChoBmgJaA9DCNFcp5HWGIPAlIaUUpRoFUtgaBZHQKnSGu4gA6x1fZQoaAZoCWgPQwhZT62+OhCEwJSGlFKUaBVLTmgWR0Cp0k4jB2wFdX2UKGgGaAloD0MIrWu0HOihnsCUhpRSlGgVTQIBaBZHQKnTDc4YJmd1fZQoaAZoCWgPQwhBgXfyiY2XwJSGlFKUaBVLy2gWR0Cp0524mTkidX2UKGgGaAloD0MIhgFLrpKYksCUhpRSlGgVS6loFkdAqdQQoPTXrnV9lChoBmgJaA9DCDmYTYChY37AlIaUUpRoFUtYaBZHQKnUSxUvPC51fZQoaAZoCWgPQwjBHhMpLaaYwJSGlFKUaBVLy2gWR0Cp1NkTpPhydX2UKGgGaAloD0MIOQ68Wq6MfcCUhpRSlGgVS1JoFkdAqdUOktVaOnV9lChoBmgJaA9DCGL4iJhK9KfAlIaUUpRoFU1UAWgWR0Cp1i9oN/e+dX2UKGgGaAloD0MISRCugEL4gsCUhpRSlGgVS2BoFkdAqdZtHavicXV9lChoBmgJaA9DCHNLqyER44LAlIaUUpRoFUtxaBZHQKnWtj4Hoox1fZQoaAZoCWgPQwhX6INlrBt7wJSGlFKUaBVLWmgWR0Cp1vGVzIV/dX2UKGgGaAloD0MIHThnROlJhMCUhpRSlGgVS1BoFkdAqdcmCiAUcnV9lChoBmgJaA9DCL+36c9+Q33AlIaUUpRoFUtUaBZHQKnXWz544ZN1fZQoaAZoCWgPQwjedqG5DnqCwJSGlFKUaBVLV2gWR0Cp15Gce8wpdX2UKGgGaAloD0MIbhlwltoWocCUhpRSlGgVS/loFkdAqdhNe6ZpjHV9lChoBmgJaA9DCMLCSZqfTITAlIaUUpRoFUtraBZHQKnYkoa1kUd1fZQoaAZoCWgPQwirQZjbfS1/wJSGlFKUaBVLT2gWR0Cp2MTLns9kdX2UKGgGaAloD0MI3C4014nsgsCUhpRSlGgVS2toFkdAqdkIkPczqXV9lChoBmgJaA9DCIBKlSjbcJHAlIaUUpRoFUuSaBZHQKnZZuhsZYR1fZQoaAZoCWgPQwgHeT2YlEp9wJSGlFKUaBVLW2gWR0Cp2aEkrwvydX2UKGgGaAloD0MImiSWlJtUgcCUhpRSlGgVS0hoFkdAqdnNwWFewHV9lChoBmgJaA9DCO1jBb9NjH3AlIaUUpRoFUtJaBZHQKnZ+3azu4R1fZQoaAZoCWgPQwhtPNhiN1GAwJSGlFKUaBVLaGgWR0Cp2kLJCBwudX2UKGgGaAloD0MIAyLElfPbfsCUhpRSlGgVS19oFkdAqdqBeLNwBHV9lChoBmgJaA9DCC5U/rU8VIHAlIaUUpRoFUtbaBZHQKnau/2TPjZ1fZQoaAZoCWgPQwi5ADRKdwSPwJSGlFKUaBVLi2gWR0Cp2xep4rz5dX2UKGgGaAloD0MIWhKgppYsecCUhpRSlGgVS1VoFkdAqdtNFKCg9XV9lChoBmgJaA9DCHi0ccTaioTAlIaUUpRoFUtyaBZHQKnbmA80UGp1fZQoaAZoCWgPQwhf7L340keSwJSGlFKUaBVLmGgWR0Cp3ASgoPTYdX2UKGgGaAloD0MIKZfGLzxXecCUhpRSlGgVS1JoFkdAqdw9qi48U3V9lChoBmgJaA9DCAyTqYIRenjAlIaUUpRoFUtjaBZHQKniH+d9Ujt1fZQoaAZoCWgPQwgB/FOqRFl5wJSGlFKUaBVLSmgWR0Cp4lME7nxKdX2UKGgGaAloD0MIem6hKxERjcCUhpRSlGgVS6poFkdAqeLHogV45nV9lChoBmgJaA9DCFMEOL27jZnAlIaUUpRoFUvQaBZHQKnjWv38GcF1fZQoaAZoCWgPQwhPkNju3i+XwJSGlFKUaBVL12gWR0Cp4/anaWX1dX2UKGgGaAloD0MImgmGc+1UhcCUhpRSlGgVS2hoFkdAqeQ8Rcu8LHV9lChoBmgJaA9DCMLZrWUSAJ3AlIaUUpRoFUvWaBZHQKnk1hWo3rF1fZQoaAZoCWgPQwhAwjBgaUmDwJSGlFKUaBVLU2gWR0Cp5QsXaakRdX2UKGgGaAloD0MITUwXYvWrh8CUhpRSlGgVS5RoFkdAqeVu98JD3XV9lChoBmgJaA9DCLX+lgAMzpjAlIaUUpRoFUu5aBZHQKnl7VBD5TJ1fZQoaAZoCWgPQwj7rZ0oiW2EwJSGlFKUaBVLaGgWR0Cp5i6isXBQdX2UKGgGaAloD0MILuQR3Gg4gMCUhpRSlGgVS1RoFkdAqeZn+n62v3V9lChoBmgJaA9DCIYdxqRfgoXAlIaUUpRoFUuGaBZHQKnmvxVAAyV1fZQoaAZoCWgPQwj+RGXDus+QwJSGlFKUaBVLi2gWR0Cp5xkqUeMidX2UKGgGaAloD0MI7gbRWhFnfcCUhpRSlGgVS0loFkdAqedF8LKFI3V9lChoBmgJaA9DCGuCqPuAI4HAlIaUUpRoFUtaaBZHQKnnfjz7MxJ1fZQoaAZoCWgPQwh40VeQhoSCwJSGlFKUaBVLWWgWR0Cp57WbgCOndX2UKGgGaAloD0MIhxbZzjc8jcCUhpRSlGgVS3doFkdAqegCcf/3nXV9lChoBmgJaA9DCHo3FhSGeoXAlIaUUpRoFUt8aBZHQKnoV+sHSnd1fZQoaAZoCWgPQwggelImtTWHwJSGlFKUaBVLd2gWR0Cp6KT4cm0FdX2UKGgGaAloD0MIo68gzZjkjcCUhpRSlGgVS6BoFkdAqekSY7aIvnV9lChoBmgJaA9DCPhsHRyMy4PAlIaUUpRoFUtSaBZHQKnpRmf5DZ11fZQoaAZoCWgPQwirs1pgT/Z+wJSGlFKUaBVLWWgWR0Cp6X9MCcPOdX2UKGgGaAloD0MIdlPKa8UfisCUhpRSlGgVS3RoFkdAqenJ8Sf16HV9lChoBmgJaA9DCIP3VbmwJ4bAlIaUUpRoFUtuaBZHQKnqEiW3Sa51fZQoaAZoCWgPQwibPGU1nRCDwJSGlFKUaBVLXWgWR0Cp6kzasZHedX2UKGgGaAloD0MIb7ckBwwUiMCUhpRSlGgVS4toFkdAqeqrc45tFnV9lChoBmgJaA9DCOUMxR0fmpTAlIaUUpRoFUvSaBZHQKnrQbx3FDR1fZQoaAZoCWgPQwhL6ZleQlqBwJSGlFKUaBVLUGgWR0Cp63PEjxCqdX2UKGgGaAloD0MIz2qBPcZsgMCUhpRSlGgVS2JoFkdAqeuz0xubZ3V9lChoBmgJaA9DCKAy/n0m44PAlIaUUpRoFUtwaBZHQKnr/eF+NLl1fZQoaAZoCWgPQwgz4gLQqNOHwJSGlFKUaBVLYWgWR0Cp7DyprDZUdX2UKGgGaAloD0MINuUK79LAgcCUhpRSlGgVS0xoFkdAqexy0ngHeXV9lChoBmgJaA9DCPAxWHFqTILAlIaUUpRoFUtLaBZHQKnyc0x/NJR1fZQoaAZoCWgPQwh0DMheDyWAwJSGlFKUaBVLfGgWR0Cp8smEPDpDdX2UKGgGaAloD0MIk+LjE9JyiMCUhpRSlGgVS2poFkdAqfNC1Z1V53V9lChoBmgJaA9DCPIlVHAYII7AlIaUUpRoFUukaBZHQKnzvbg0j1R1fZQoaAZoCWgPQwgxmL9C5n1/wJSGlFKUaBVLSGgWR0Cp8+u938oAdX2UKGgGaAloD0MIYAFMGfiye8CUhpRSlGgVS05oFkdAqfQiWLP2PHV9lChoBmgJaA9DCK5nCMfsIX7AlIaUUpRoFUtZaBZHQKn0YR02cax1fZQoaAZoCWgPQwgSaLCps9R/wJSGlFKUaBVLT2gWR0Cp9JheXzDodX2UKGgGaAloD0MIPbt866M/iMCUhpRSlGgVS3BoFkdAqfTkH+qBE3V9lChoBmgJaA9DCPTF3ovva3/AlIaUUpRoFUtYaBZHQKn1HhUBGQV1fZQoaAZoCWgPQwgew2M/u7iQwJSGlFKUaBVLlGgWR0Cp9YSY5T60dX2UKGgGaAloD0MIJUG4AirmmMCUhpRSlGgVS9hoFkdAqfYhsTFl1HV9lChoBmgJaA9DCKSJd4BnHZDAlIaUUpRoFUuTaBZHQKn2guDBdld1fZQoaAZoCWgPQwidgZGXtVWGwJSGlFKUaBVLbWgWR0Cp9s9B0ITodX2UKGgGaAloD0MIPbfQlegFicCUhpRSlGgVS35oFkdAqfcksH0K7nV9lChoBmgJaA9DCPOtD+tt+4PAlIaUUpRoFUtVaBZHQKn3X5Sm65J1fZQoaAZoCWgPQwg7p1mgrT2VwJSGlFKUaBVLt2gWR0Cp9+ZOSGJvdX2UKGgGaAloD0MIYtwNojUrf8CUhpRSlGgVS1JoFkdAqfgao4uK43V9lChoBmgJaA9DCAzKNJo8woLAlIaUUpRoFUtHaBZHQKn4ScrAgxJ1fZQoaAZoCWgPQwgTnWUWUc2QwJSGlFKUaBVLkmgWR0Cp+LFKsdT6dX2UKGgGaAloD0MInYGRl1UfisCUhpRSlGgVS3xoFkdAqfkFRHf/FXV9lChoBmgJaA9DCE57Ss5J3YTAlIaUUpRoFUtzaBZHQKn5T4Z/CqJ1fZQoaAZoCWgPQwg5l+KqsgaFwJSGlFKUaBVLi2gWR0Cp+atrKvFFdX2UKGgGaAloD0MIO6dZoO0/l8CUhpRSlGgVS8ZoFkdAqfo3xUedTnV9lChoBmgJaA9DCE5HADerb4PAlIaUUpRoFUtTaBZHQKn6bFUADJV1fZQoaAZoCWgPQwgH6/8cRhOFwJSGlFKUaBVLd2gWR0Cp+r1x0dR0dX2UKGgGaAloD0MIJNI2/lR2lsCUhpRSlGgVS8hoFkdAqftFhXr+pHV9lChoBmgJaA9DCP0Ux4GXaYvAlIaUUpRoFUt6aBZHQKn7lpFCswN1fZQoaAZoCWgPQwiHTs+78Sp8wJSGlFKUaBVLSWgWR0Cp+8YyfthNdX2UKGgGaAloD0MI2XdF8J/nicCUhpRSlGgVS3NoFkdAqfwTkXDWLHV9lChoBmgJaA9DCMnH7gLlQYXAlIaUUpRoFUtmaBZHQKn8VfP5YYB1fZQoaAZoCWgPQwhHWipvh5SMwJSGlFKUaBVLpmgWR0Cp/M1xbSqmdX2UKGgGaAloD0MIxqUqbRHbkMCUhpRSlGgVS6BoFkdAqf08qx1PnHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3680, "n_steps": 4096, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc86afc521f239feccfbfe031c975e878d48d54e58353304ab57acf2e2ecdcea
|
3 |
+
size 156580
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -817.3362859742716, "std_reward": 267.342821051983, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-25T10:31:43.163322"}
|