Berserker
Browse files- .gitattributes +1 -0
- README.md +36 -0
- Ratata.zip +3 -0
- Ratata/_stable_baselines3_version +1 -0
- Ratata/data +94 -0
- Ratata/policy.optimizer.pth +3 -0
- Ratata/policy.pth +3 -0
- Ratata/pytorch_variables.pth +3 -0
- Ratata/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 221.21 +/- 48.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
Ratata.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac073db0208f890f0f3a61d12840a4221c79b0e175950f123c3c34cc45f3c3fa
|
3 |
+
size 143500
|
Ratata/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
Ratata/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf06421830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf064218c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf06421950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf064219e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdf06421a70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdf06421b00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf06421b90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdf06421c20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf06421cb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf06421d40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf06421dd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fdf0647d060>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 501760,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1656144965.8532536,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgQDSCvbQ+WD6IANY9O648vp8V5ryLQaS8AAAAAAAAAACUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEOuNWmFFb0CUhpRSlIwBbJRNegGMAXSUR0CT03U+9rXUdX2UKGgGaAloD0MIuyU5YNeIbUCUhpRSlGgVTSEBaBZHQJPapQdjoZB1fZQoaAZoCWgPQwgSwqONI11vQJSGlFKUaBVNKQFoFkdAk9xklzEJjXV9lChoBmgJaA9DCNGVCFT/uWVAlIaUUpRoFU3sAWgWR0CT38qIJqqPdX2UKGgGaAloD0MIBi0kYHS5+L+UhpRSlGgVS+5oFkdAk+EXZXdTHnV9lChoBmgJaA9DCDG3e7lPUFdAlIaUUpRoFU3oA2gWR0CT7YD3M6ikdX2UKGgGaAloD0MIS6yMRj56Z0CUhpRSlGgVTSABaBZHQJPvKXa8HwB1fZQoaAZoCWgPQwhFuTR+4cUZwJSGlFKUaBVLvGgWR0CT8B2OhkAhdX2UKGgGaAloD0MIC/FIvLwPbECUhpRSlGgVTQYBaBZHQJPxpyfcvdx1fZQoaAZoCWgPQwi/8EqS58oiwJSGlFKUaBVL82gWR0CT8vfD1oQGdX2UKGgGaAloD0MIJxb4im7tFcCUhpRSlGgVS45oFkdAk/Ozslb/wXV9lChoBmgJaA9DCDij5qvkX2tAlIaUUpRoFU0mAWgWR0CT9XZlFtsOdX2UKGgGaAloD0MI+BbWjTeocECUhpRSlGgVS/JoFkdAk/bKBun/DXV9lChoBmgJaA9DCKTfvg6c101AlIaUUpRoFU3oA2gWR0CUBGNRWLgodX2UKGgGaAloD0MImdNlMbGZWkCUhpRSlGgVTegDaBZHQJQKDW4EwFl1fZQoaAZoCWgPQwjq7GRwFA9tQJSGlFKUaBVL52gWR0CUCzbT+ee4dX2UKGgGaAloD0MI1/oioa39bUCUhpRSlGgVTUgBaBZHQJQS2OinHed1fZQoaAZoCWgPQwhlGHeDKGhxQJSGlFKUaBVNNAFoFkdAlBSKWom5UnV9lChoBmgJaA9DCJJAg02dkzjAlIaUUpRoFUu5aBZHQJQVhhnanJl1fZQoaAZoCWgPQwivQPSkDOhwQJSGlFKUaBVNJQFoFkdAlBcmpuMuOHV9lChoBmgJaA9DCEERixh2G25AlIaUUpRoFU0eAWgWR0CUGLfRu0kXdX2UKGgGaAloD0MIVAJiEq6DaECUhpRSlGgVTSoBaBZHQJQabmwJPZZ1fZQoaAZoCWgPQwhCQpQv6BRuQJSGlFKUaBVNVwFoFkdAlBxa5wwTNHV9lChoBmgJaA9DCG+cFOY9HhFAlIaUUpRoFUukaBZHQJQiy43FUAF1fZQoaAZoCWgPQwgMWHIVyy5wQJSGlFKUaBVNEAFoFkdAlCRfeDWbw3V9lChoBmgJaA9DCJ9x4UBI511AlIaUUpRoFU3oA2gWR0CUKyWrwOOKdX2UKGgGaAloD0MIl445z5gGcECUhpRSlGgVS/9oFkdAlCyWza9K3HV9lChoBmgJaA9DCKOvIM3YxWlAlIaUUpRoFU14AWgWR0CULxEaVD8cdX2UKGgGaAloD0MIJ8Eb0qjAbUCUhpRSlGgVTQkBaBZHQJQ2K7mMfih1fZQoaAZoCWgPQwgptKz7x5VvQJSGlFKUaBVNNQFoFkdAlDgBfjS5RXV9lChoBmgJaA9DCJQSglX1rjDAlIaUUpRoFUuoaBZHQJQ46IWP91l1fZQoaAZoCWgPQwhagSGrW41dQJSGlFKUaBVN6ANoFkdAlEATrRjSX3V9lChoBmgJaA9DCHHl7J3RFhPAlIaUUpRoFUujaBZHQJRA6yE+Pil1fZQoaAZoCWgPQwgBpDZx8mJoQJSGlFKUaBVNhwFoFkdAlEjcnJDE33V9lChoBmgJaA9DCAcJUb6gUTBAlIaUUpRoFUuTaBZHQJRJoHfMwDh1fZQoaAZoCWgPQwg+XHLcaeNwQJSGlFKUaBVL+GgWR0CUSweeWfK7dX2UKGgGaAloD0MIDVTGv8+9b0CUhpRSlGgVTRUBaBZHQJRMkX2ugYh1fZQoaAZoCWgPQwgai6azE8RxQJSGlFKUaBVNPAFoFkdAlE5rULDyfHV9lChoBmgJaA9DCOW2fY86DHFAlIaUUpRoFUvwaBZHQJRPzABT4tZ1fZQoaAZoCWgPQwhhwf2AB+YTQJSGlFKUaBVL1WgWR0CUUO2OhkAhdX2UKGgGaAloD0MI48Yt5mevcECUhpRSlGgVTQ8BaBZHQJRSieHzpX91fZQoaAZoCWgPQwjtR4rIsEr/P5SGlFKUaBVLqmgWR0CUU2ihWYF8dX2UKGgGaAloD0MIYTjXMMMWcUCUhpRSlGgVTdMBaBZHQJRb7ZGrjo91fZQoaAZoCWgPQwgydsJL8C9rQJSGlFKUaBVNDAFoFkdAlF1362v0RXV9lChoBmgJaA9DCHZxGw3gcW5AlIaUUpRoFU0rAWgWR0CUXykpZwGXdX2UKGgGaAloD0MI/1nz4y9ZakCUhpRSlGgVTRoBaBZHQJRgvY4ACGN1fZQoaAZoCWgPQwh32ERmbqlwQJSGlFKUaBVNBwFoFkdAlGIrobGWEHV9lChoBmgJaA9DCOYHrvIEdjtAlIaUUpRoFUulaBZHQJRjDjvNNah1fZQoaAZoCWgPQwhcyvli78XJP5SGlFKUaBVLoGgWR0CUY+NPxhDxdX2UKGgGaAloD0MIR+S7lLq7bkCUhpRSlGgVS+doFkdAlGqbpaA4GXV9lChoBmgJaA9DCPmh0ohZyHFAlIaUUpRoFU06AWgWR0CUbHncclw+dX2UKGgGaAloD0MInzws1JpZWkCUhpRSlGgVTegDaBZHQJRzBpsXSBt1fZQoaAZoCWgPQwjQXn08dCNuQJSGlFKUaBVNMAFoFkdAlHS48EFGG3V9lChoBmgJaA9DCAqjWdk+vCrAlIaUUpRoFUu0aBZHQJR1uqm0mdB1fZQoaAZoCWgPQwgu46YGGhVhQJSGlFKUaBVN6ANoFkdAlII3wCr923V9lChoBmgJaA9DCAAeUaE6fG9AlIaUUpRoFUvaaBZHQJSDYzzmOlx1fZQoaAZoCWgPQwi1qE9yh4ZtQJSGlFKUaBVL82gWR0CUhL4eLehxdX2UKGgGaAloD0MI0LcFS3XPcECUhpRSlGgVTRMBaBZHQJSGWhM8HOd1fZQoaAZoCWgPQwigwDv59N9sQJSGlFKUaBVL6GgWR0CUh5xbjcVQdX2UKGgGaAloD0MIq7AZ4ALmbUCUhpRSlGgVS+toFkdAlIjkknkT6HV9lChoBmgJaA9DCEnajT5mYW1AlIaUUpRoFU0PAWgWR0CUj+hoduHfdX2UKGgGaAloD0MIb2OzI1U9aECUhpRSlGgVTQgBaBZHQJSRYxVQyh11fZQoaAZoCWgPQwjC24MQkBRxQJSGlFKUaBVNLQFoFkdAlJMTWf9P13V9lChoBmgJaA9DCGUXDK65b3BAlIaUUpRoFUvmaBZHQJSUZz3h4t91fZQoaAZoCWgPQwjfpj/7kTomQJSGlFKUaBVLoWgWR0CUlTpwS8J2dX2UKGgGaAloD0MIVHQklz9rcUCUhpRSlGgVTRQBaBZHQJSW2SPluFZ1fZQoaAZoCWgPQwhqwvaTMZ5sQJSGlFKUaBVNAAFoFkdAlJhEMCtA9nV9lChoBmgJaA9DCIaRXtRucGxAlIaUUpRoFU0UAWgWR0CUmfIF/x2CdX2UKGgGaAloD0MI1NLcCuFqbkCUhpRSlGgVTVABaBZHQJShqY4Qz1t1fZQoaAZoCWgPQwj68gLso9MJwJSGlFKUaBVLqmgWR0CUooxsl9jPdX2UKGgGaAloD0MIbcfUXdlUbkCUhpRSlGgVTQ0BaBZHQJSkBjiGWUt1fZQoaAZoCWgPQwh/LhoyXnZxQJSGlFKUaBVNBQFoFkdAlKV9sSCe3HV9lChoBmgJaA9DCF6dY0D2mhDAlIaUUpRoFUvUaBZHQJSmmUxEfDF1fZQoaAZoCWgPQwiygAncOt9vQJSGlFKUaBVL3mgWR0CUp8oL5RCQdX2UKGgGaAloD0MInuxmRj8XbkCUhpRSlGgVS+FoFkdAlKkA1R+BpnV9lChoBmgJaA9DCLraiv1lRGxAlIaUUpRoFU08AWgWR0CUqtTIvJzUdX2UKGgGaAloD0MIlugsswiCa0CUhpRSlGgVTRIBaBZHQJSyFR2r4nF1fZQoaAZoCWgPQwhwI2WLpBUvQJSGlFKUaBVLt2gWR0CUswhM8HObdX2UKGgGaAloD0MIhQt5BDf+MUCUhpRSlGgVS9toFkdAlLQz3h4t6HV9lChoBmgJaA9DCBKEK6BQgnFAlIaUUpRoFU0gAWgWR0CUtc8eS0SidX2UKGgGaAloD0MIxlBOtKuOcECUhpRSlGgVS/FoFkdAlLcpfICEH3V9lChoBmgJaA9DCHjy6bEtiyBAlIaUUpRoFUuqaBZHQJS4EcuJ1q51fZQoaAZoCWgPQwhMGM3K9gEawJSGlFKUaBVLgWgWR0CUuMD+R5kcdX2UKGgGaAloD0MIwqT4+ITEcECUhpRSlGgVTSsBaBZHQJS6ax/ustF1fZQoaAZoCWgPQwg0vi8uVSn2P5SGlFKUaBVL5mgWR0CUu7G1QZXNdX2UKGgGaAloD0MIlghU/6BMbUCUhpRSlGgVS+1oFkdAlMKYJJGvwHV9lChoBmgJaA9DCAvsMZHSQDtAlIaUUpRoFUvAaBZHQJTDmUFB6a91fZQoaAZoCWgPQwjfiVkvhqdZQJSGlFKUaBVN6ANoFkdAlMnH5vcafnV9lChoBmgJaA9DCAu45/nTfEhAlIaUUpRoFUvlaBZHQJTK/NliBoV1fZQoaAZoCWgPQwgRVmMJays9QJSGlFKUaBVL22gWR0CUzE4G2TgVdX2UKGgGaAloD0MI8FF/vYLhcECUhpRSlGgVTSQBaBZHQJTOlvddmg91fZQoaAZoCWgPQwh/bJIf8UhvQJSGlFKUaBVL+2gWR0CU1qXnyNGWdX2UKGgGaAloD0MIqYQn9Pq/U0CUhpRSlGgVTegDaBZHQJTd2q94/u91fZQoaAZoCWgPQwjr4GBv4i9xQJSGlFKUaBVNQwFoFkdAlN+vPPcBVHV9lChoBmgJaA9DCMGMKVjjFC7AlIaUUpRoFUvUaBZHQJTgxJvo/zJ1fZQoaAZoCWgPQwgIc7uX+yhZQJSGlFKUaBVN6ANoFkdAlO2prk8zRHV9lChoBmgJaA9DCI0OSMI+PnBAlIaUUpRoFU0FAWgWR0CU7yf4REncdX2UKGgGaAloD0MIP+QtVz86QcCUhpRSlGgVS/JoFkdAlPBptm+TNnV9lChoBmgJaA9DCI7NjlRf7G5AlIaUUpRoFU0TAWgWR0CU8fwIMSbpdX2UKGgGaAloD0MIup7ounCCcUCUhpRSlGgVTWkBaBZHQJTz7/Lkjop1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 2940,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
Ratata/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8bd2fa8ceb9a7e4e1591735cc626f3d59253f99aa6f9758ddf093424ae66620
|
3 |
+
size 84893
|
Ratata/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5216ff7917a98ac598f22cfead51ddd633f1ec67db0dcb56febface7eb01f44
|
3 |
+
size 43201
|
Ratata/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
Ratata/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf06421830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf064218c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf06421950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf064219e0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf06421a70>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf06421b00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf06421b90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf06421c20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf06421cb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf06421d40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf06421dd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf0647d060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 501760, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1656144965.8532536, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVqgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMgQDSCvbQ+WD6IANY9O648vp8V5ryLQaS8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVVhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEOuNWmFFb0CUhpRSlIwBbJRNegGMAXSUR0CT03U+9rXUdX2UKGgGaAloD0MIuyU5YNeIbUCUhpRSlGgVTSEBaBZHQJPapQdjoZB1fZQoaAZoCWgPQwgSwqONI11vQJSGlFKUaBVNKQFoFkdAk9xklzEJjXV9lChoBmgJaA9DCNGVCFT/uWVAlIaUUpRoFU3sAWgWR0CT38qIJqqPdX2UKGgGaAloD0MIBi0kYHS5+L+UhpRSlGgVS+5oFkdAk+EXZXdTHnV9lChoBmgJaA9DCDG3e7lPUFdAlIaUUpRoFU3oA2gWR0CT7YD3M6ikdX2UKGgGaAloD0MIS6yMRj56Z0CUhpRSlGgVTSABaBZHQJPvKXa8HwB1fZQoaAZoCWgPQwhFuTR+4cUZwJSGlFKUaBVLvGgWR0CT8B2OhkAhdX2UKGgGaAloD0MIC/FIvLwPbECUhpRSlGgVTQYBaBZHQJPxpyfcvdx1fZQoaAZoCWgPQwi/8EqS58oiwJSGlFKUaBVL82gWR0CT8vfD1oQGdX2UKGgGaAloD0MIJxb4im7tFcCUhpRSlGgVS45oFkdAk/Ozslb/wXV9lChoBmgJaA9DCDij5qvkX2tAlIaUUpRoFU0mAWgWR0CT9XZlFtsOdX2UKGgGaAloD0MI+BbWjTeocECUhpRSlGgVS/JoFkdAk/bKBun/DXV9lChoBmgJaA9DCKTfvg6c101AlIaUUpRoFU3oA2gWR0CUBGNRWLgodX2UKGgGaAloD0MImdNlMbGZWkCUhpRSlGgVTegDaBZHQJQKDW4EwFl1fZQoaAZoCWgPQwjq7GRwFA9tQJSGlFKUaBVL52gWR0CUCzbT+ee4dX2UKGgGaAloD0MI1/oioa39bUCUhpRSlGgVTUgBaBZHQJQS2OinHed1fZQoaAZoCWgPQwhlGHeDKGhxQJSGlFKUaBVNNAFoFkdAlBSKWom5UnV9lChoBmgJaA9DCJJAg02dkzjAlIaUUpRoFUu5aBZHQJQVhhnanJl1fZQoaAZoCWgPQwivQPSkDOhwQJSGlFKUaBVNJQFoFkdAlBcmpuMuOHV9lChoBmgJaA9DCEERixh2G25AlIaUUpRoFU0eAWgWR0CUGLfRu0kXdX2UKGgGaAloD0MIVAJiEq6DaECUhpRSlGgVTSoBaBZHQJQabmwJPZZ1fZQoaAZoCWgPQwhCQpQv6BRuQJSGlFKUaBVNVwFoFkdAlBxa5wwTNHV9lChoBmgJaA9DCG+cFOY9HhFAlIaUUpRoFUukaBZHQJQiy43FUAF1fZQoaAZoCWgPQwgMWHIVyy5wQJSGlFKUaBVNEAFoFkdAlCRfeDWbw3V9lChoBmgJaA9DCJ9x4UBI511AlIaUUpRoFU3oA2gWR0CUKyWrwOOKdX2UKGgGaAloD0MIl445z5gGcECUhpRSlGgVS/9oFkdAlCyWza9K3HV9lChoBmgJaA9DCKOvIM3YxWlAlIaUUpRoFU14AWgWR0CULxEaVD8cdX2UKGgGaAloD0MIJ8Eb0qjAbUCUhpRSlGgVTQkBaBZHQJQ2K7mMfih1fZQoaAZoCWgPQwgptKz7x5VvQJSGlFKUaBVNNQFoFkdAlDgBfjS5RXV9lChoBmgJaA9DCJQSglX1rjDAlIaUUpRoFUuoaBZHQJQ46IWP91l1fZQoaAZoCWgPQwhagSGrW41dQJSGlFKUaBVN6ANoFkdAlEATrRjSX3V9lChoBmgJaA9DCHHl7J3RFhPAlIaUUpRoFUujaBZHQJRA6yE+Pil1fZQoaAZoCWgPQwgBpDZx8mJoQJSGlFKUaBVNhwFoFkdAlEjcnJDE33V9lChoBmgJaA9DCAcJUb6gUTBAlIaUUpRoFUuTaBZHQJRJoHfMwDh1fZQoaAZoCWgPQwg+XHLcaeNwQJSGlFKUaBVL+GgWR0CUSweeWfK7dX2UKGgGaAloD0MIDVTGv8+9b0CUhpRSlGgVTRUBaBZHQJRMkX2ugYh1fZQoaAZoCWgPQwgai6azE8RxQJSGlFKUaBVNPAFoFkdAlE5rULDyfHV9lChoBmgJaA9DCOW2fY86DHFAlIaUUpRoFUvwaBZHQJRPzABT4tZ1fZQoaAZoCWgPQwhhwf2AB+YTQJSGlFKUaBVL1WgWR0CUUO2OhkAhdX2UKGgGaAloD0MI48Yt5mevcECUhpRSlGgVTQ8BaBZHQJRSieHzpX91fZQoaAZoCWgPQwjtR4rIsEr/P5SGlFKUaBVLqmgWR0CUU2ihWYF8dX2UKGgGaAloD0MIYTjXMMMWcUCUhpRSlGgVTdMBaBZHQJRb7ZGrjo91fZQoaAZoCWgPQwgydsJL8C9rQJSGlFKUaBVNDAFoFkdAlF1362v0RXV9lChoBmgJaA9DCHZxGw3gcW5AlIaUUpRoFU0rAWgWR0CUXykpZwGXdX2UKGgGaAloD0MI/1nz4y9ZakCUhpRSlGgVTRoBaBZHQJRgvY4ACGN1fZQoaAZoCWgPQwh32ERmbqlwQJSGlFKUaBVNBwFoFkdAlGIrobGWEHV9lChoBmgJaA9DCOYHrvIEdjtAlIaUUpRoFUulaBZHQJRjDjvNNah1fZQoaAZoCWgPQwhcyvli78XJP5SGlFKUaBVLoGgWR0CUY+NPxhDxdX2UKGgGaAloD0MIR+S7lLq7bkCUhpRSlGgVS+doFkdAlGqbpaA4GXV9lChoBmgJaA9DCPmh0ohZyHFAlIaUUpRoFU06AWgWR0CUbHncclw+dX2UKGgGaAloD0MInzws1JpZWkCUhpRSlGgVTegDaBZHQJRzBpsXSBt1fZQoaAZoCWgPQwjQXn08dCNuQJSGlFKUaBVNMAFoFkdAlHS48EFGG3V9lChoBmgJaA9DCAqjWdk+vCrAlIaUUpRoFUu0aBZHQJR1uqm0mdB1fZQoaAZoCWgPQwgu46YGGhVhQJSGlFKUaBVN6ANoFkdAlII3wCr923V9lChoBmgJaA9DCAAeUaE6fG9AlIaUUpRoFUvaaBZHQJSDYzzmOlx1fZQoaAZoCWgPQwi1qE9yh4ZtQJSGlFKUaBVL82gWR0CUhL4eLehxdX2UKGgGaAloD0MI0LcFS3XPcECUhpRSlGgVTRMBaBZHQJSGWhM8HOd1fZQoaAZoCWgPQwigwDv59N9sQJSGlFKUaBVL6GgWR0CUh5xbjcVQdX2UKGgGaAloD0MIq7AZ4ALmbUCUhpRSlGgVS+toFkdAlIjkknkT6HV9lChoBmgJaA9DCEnajT5mYW1AlIaUUpRoFU0PAWgWR0CUj+hoduHfdX2UKGgGaAloD0MIb2OzI1U9aECUhpRSlGgVTQgBaBZHQJSRYxVQyh11fZQoaAZoCWgPQwjC24MQkBRxQJSGlFKUaBVNLQFoFkdAlJMTWf9P13V9lChoBmgJaA9DCGUXDK65b3BAlIaUUpRoFUvmaBZHQJSUZz3h4t91fZQoaAZoCWgPQwjfpj/7kTomQJSGlFKUaBVLoWgWR0CUlTpwS8J2dX2UKGgGaAloD0MIVHQklz9rcUCUhpRSlGgVTRQBaBZHQJSW2SPluFZ1fZQoaAZoCWgPQwhqwvaTMZ5sQJSGlFKUaBVNAAFoFkdAlJhEMCtA9nV9lChoBmgJaA9DCIaRXtRucGxAlIaUUpRoFU0UAWgWR0CUmfIF/x2CdX2UKGgGaAloD0MI1NLcCuFqbkCUhpRSlGgVTVABaBZHQJShqY4Qz1t1fZQoaAZoCWgPQwj68gLso9MJwJSGlFKUaBVLqmgWR0CUooxsl9jPdX2UKGgGaAloD0MIbcfUXdlUbkCUhpRSlGgVTQ0BaBZHQJSkBjiGWUt1fZQoaAZoCWgPQwh/LhoyXnZxQJSGlFKUaBVNBQFoFkdAlKV9sSCe3HV9lChoBmgJaA9DCF6dY0D2mhDAlIaUUpRoFUvUaBZHQJSmmUxEfDF1fZQoaAZoCWgPQwiygAncOt9vQJSGlFKUaBVL3mgWR0CUp8oL5RCQdX2UKGgGaAloD0MInuxmRj8XbkCUhpRSlGgVS+FoFkdAlKkA1R+BpnV9lChoBmgJaA9DCLraiv1lRGxAlIaUUpRoFU08AWgWR0CUqtTIvJzUdX2UKGgGaAloD0MIlugsswiCa0CUhpRSlGgVTRIBaBZHQJSyFR2r4nF1fZQoaAZoCWgPQwhwI2WLpBUvQJSGlFKUaBVLt2gWR0CUswhM8HObdX2UKGgGaAloD0MIhQt5BDf+MUCUhpRSlGgVS9toFkdAlLQz3h4t6HV9lChoBmgJaA9DCBKEK6BQgnFAlIaUUpRoFU0gAWgWR0CUtc8eS0SidX2UKGgGaAloD0MIxlBOtKuOcECUhpRSlGgVS/FoFkdAlLcpfICEH3V9lChoBmgJaA9DCHjy6bEtiyBAlIaUUpRoFUuqaBZHQJS4EcuJ1q51fZQoaAZoCWgPQwhMGM3K9gEawJSGlFKUaBVLgWgWR0CUuMD+R5kcdX2UKGgGaAloD0MIwqT4+ITEcECUhpRSlGgVTSsBaBZHQJS6ax/ustF1fZQoaAZoCWgPQwg0vi8uVSn2P5SGlFKUaBVL5mgWR0CUu7G1QZXNdX2UKGgGaAloD0MIlghU/6BMbUCUhpRSlGgVS+1oFkdAlMKYJJGvwHV9lChoBmgJaA9DCAvsMZHSQDtAlIaUUpRoFUvAaBZHQJTDmUFB6a91fZQoaAZoCWgPQwjfiVkvhqdZQJSGlFKUaBVN6ANoFkdAlMnH5vcafnV9lChoBmgJaA9DCAu45/nTfEhAlIaUUpRoFUvlaBZHQJTK/NliBoV1fZQoaAZoCWgPQwgRVmMJays9QJSGlFKUaBVL22gWR0CUzE4G2TgVdX2UKGgGaAloD0MI8FF/vYLhcECUhpRSlGgVTSQBaBZHQJTOlvddmg91fZQoaAZoCWgPQwh/bJIf8UhvQJSGlFKUaBVL+2gWR0CU1qXnyNGWdX2UKGgGaAloD0MIqYQn9Pq/U0CUhpRSlGgVTegDaBZHQJTd2q94/u91fZQoaAZoCWgPQwjr4GBv4i9xQJSGlFKUaBVNQwFoFkdAlN+vPPcBVHV9lChoBmgJaA9DCMGMKVjjFC7AlIaUUpRoFUvUaBZHQJTgxJvo/zJ1fZQoaAZoCWgPQwgIc7uX+yhZQJSGlFKUaBVN6ANoFkdAlO2prk8zRHV9lChoBmgJaA9DCI0OSMI+PnBAlIaUUpRoFU0FAWgWR0CU7yf4REncdX2UKGgGaAloD0MIP+QtVz86QcCUhpRSlGgVS/JoFkdAlPBptm+TNnV9lChoBmgJaA9DCI7NjlRf7G5AlIaUUpRoFU0TAWgWR0CU8fwIMSbpdX2UKGgGaAloD0MIup7ounCCcUCUhpRSlGgVTWkBaBZHQJTz7/Lkjop1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2940, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c89dd09aa3e09440da9b65113662033aa4947fc5d2f7a8694f2afbc778cfe77
|
3 |
+
size 213322
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 221.20615183451937, "std_reward": 47.99641663720722, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-25T09:31:53.135241"}
|