trapoom555's picture
modify readme
1438805
|
raw
history blame
3.68 kB
metadata
license: mit
language:
  - en
tags:
  - sentence-embedding
  - sentence-similarity
  - transformers
  - feature-extraction
pipeline_tag: sentence-similarity

Phi-2-Text-Embedding-cft

Description

This is a fine-tuned version of Phi-2 to perform Text Embedding tasks. The model is fine-tuned using the Contrastive Fine-tuning and LoRA technique on NLI datasets.

Base Model

Phi-2

Usage

  1. Clone Phi-2 repository
git clone https://huggingface.co/microsoft/phi-2
  1. Change a tokenizer setting in tokenizer_config.json
"add_eos_token": true
  1. Use the model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import numpy as np

class PhiSentenceEmbedding:
    def __init__(self, model_path='microsoft/phi-2', adapter_path=None):
        self.tokenizer = AutoTokenizer.from_pretrained(model_path)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, 
                                                          torch_dtype=torch.bfloat16,
                                                          device_map='cuda',
                                                          trust_remote_code=True)
        if adapter_path != None:
            # Load fine-tuned LoRA
            self.model.load_adapter(adapter_path)

    def get_last_hidden_state(self, text):
        inputs = self.tokenizer(text, return_tensors="pt").to('cuda')
        with torch.no_grad():
            out = self.model(**inputs, output_hidden_states=True).hidden_states[-1][0, -1, :]
        return out.squeeze().float().cpu().numpy()

    def encode(self, sentences: list[str], **kwargs) -> list[np.ndarray]:
        """
        Returns a list of embeddings for the given sentences.
        
        Args:
            sentences: List of sentences to encode

        Returns:
            List of embeddings for the given sentences
        """

        out = []

        for s in sentences:
            out.append(self.get_last_hidden_state(s))

        return out

phi_sentence_embedding = PhiSentenceEmbedding(<your-cloned-base-model-path>, 'trapoom555/Phi-2-Text-Embedding-cft')

example_sentences = ["I don't like apples", "I like apples"]

encoded_sentences = phi_sentence_embedding.encode(example_sentences)

print(encoded_sentences) 

Training Details

Training Details Value
Loss InfoNCE
Batch Size 60
InfoNCE Temperature 0.05
Learning Rate 5e-05
Warmup Steps 100
Learning Rate Scheduler CosineAnnealingLR
LoRA Rank 8
LoRA Alpha 32
LoRA Dropout 0.1
Training Precision bf16
Max Epoch 1
GPU RTX3090
Num GPUs 4

Training Scripts

(coming soon...)

Checkpoints

We provide checkpoints every 500 training steps which can be found here.

Evaluation Results

(coming soon...)

Contributors

Trapoom Ukarapol, Zhicheng Lee, Amy Xin

Foot Notes

This project is the topic-free final project of the Tsinghua University NLP course for Spring 2024.