28e56f0d55e2186f63ab0522015f27b434593fd0fac74aa8e3bd6c786b28680d
Browse files- scripts/__pycache__/prompts_from_file.cpython-310.pyc +0 -0
- scripts/__pycache__/sd_upscale.cpython-310.pyc +0 -0
- scripts/__pycache__/xyz_grid.cpython-310.pyc +0 -0
- scripts/custom_code.py +90 -0
- scripts/img2imgalt.py +218 -0
- scripts/loopback.py +140 -0
- scripts/outpainting_mk_2.py +295 -0
- scripts/poor_mans_outpainting.py +146 -0
- scripts/postprocessing_codeformer.py +36 -0
- scripts/postprocessing_gfpgan.py +33 -0
- scripts/postprocessing_upscale.py +133 -0
- scripts/prompt_matrix.py +108 -0
- scripts/prompts_from_file.py +169 -0
- scripts/sd_upscale.py +101 -0
- scripts/xyz_grid.py +734 -0
- style.css +0 -0
- test/__init__.py +0 -0
- test/conftest.py +17 -0
- test/test_extras.py +35 -0
- test/test_files/empty.pt +3 -0
- test/test_files/img2img_basic.png +0 -0
- test/test_files/mask_basic.png +0 -0
- test/test_img2img.py +68 -0
- test/test_txt2img.py +90 -0
- test/test_utils.py +33 -0
- textual_inversion_templates/hypernetwork.txt +27 -0
- textual_inversion_templates/none.txt +1 -0
- textual_inversion_templates/style.txt +19 -0
- textual_inversion_templates/style_filewords.txt +19 -0
- textual_inversion_templates/subject.txt +27 -0
- textual_inversion_templates/subject_filewords.txt +27 -0
- tmp/tagAutocompletePath.txt +1 -0
- ui-config.json +0 -0
- webui-macos-env.sh +19 -0
- webui-user.bat +8 -0
- webui-user.sh +48 -0
- webui.bat +87 -0
- webui.py +485 -0
- webui.sh +254 -0
scripts/__pycache__/prompts_from_file.cpython-310.pyc
ADDED
Binary file (4.98 kB). View file
|
|
scripts/__pycache__/sd_upscale.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
scripts/__pycache__/xyz_grid.cpython-310.pyc
ADDED
Binary file (25.6 kB). View file
|
|
scripts/custom_code.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import modules.scripts as scripts
|
2 |
+
import gradio as gr
|
3 |
+
import ast
|
4 |
+
import copy
|
5 |
+
|
6 |
+
from modules.processing import Processed
|
7 |
+
from modules.shared import cmd_opts
|
8 |
+
|
9 |
+
|
10 |
+
def convertExpr2Expression(expr):
|
11 |
+
expr.lineno = 0
|
12 |
+
expr.col_offset = 0
|
13 |
+
result = ast.Expression(expr.value, lineno=0, col_offset = 0)
|
14 |
+
|
15 |
+
return result
|
16 |
+
|
17 |
+
|
18 |
+
def exec_with_return(code, module):
|
19 |
+
"""
|
20 |
+
like exec() but can return values
|
21 |
+
https://stackoverflow.com/a/52361938/5862977
|
22 |
+
"""
|
23 |
+
code_ast = ast.parse(code)
|
24 |
+
|
25 |
+
init_ast = copy.deepcopy(code_ast)
|
26 |
+
init_ast.body = code_ast.body[:-1]
|
27 |
+
|
28 |
+
last_ast = copy.deepcopy(code_ast)
|
29 |
+
last_ast.body = code_ast.body[-1:]
|
30 |
+
|
31 |
+
exec(compile(init_ast, "<ast>", "exec"), module.__dict__)
|
32 |
+
if type(last_ast.body[0]) == ast.Expr:
|
33 |
+
return eval(compile(convertExpr2Expression(last_ast.body[0]), "<ast>", "eval"), module.__dict__)
|
34 |
+
else:
|
35 |
+
exec(compile(last_ast, "<ast>", "exec"), module.__dict__)
|
36 |
+
|
37 |
+
|
38 |
+
class Script(scripts.Script):
|
39 |
+
|
40 |
+
def title(self):
|
41 |
+
return "Custom code"
|
42 |
+
|
43 |
+
def show(self, is_img2img):
|
44 |
+
return cmd_opts.allow_code
|
45 |
+
|
46 |
+
def ui(self, is_img2img):
|
47 |
+
example = """from modules.processing import process_images
|
48 |
+
|
49 |
+
p.width = 768
|
50 |
+
p.height = 768
|
51 |
+
p.batch_size = 2
|
52 |
+
p.steps = 10
|
53 |
+
|
54 |
+
return process_images(p)
|
55 |
+
"""
|
56 |
+
|
57 |
+
|
58 |
+
code = gr.Code(value=example, language="python", label="Python code", elem_id=self.elem_id("code"))
|
59 |
+
indent_level = gr.Number(label='Indent level', value=2, precision=0, elem_id=self.elem_id("indent_level"))
|
60 |
+
|
61 |
+
return [code, indent_level]
|
62 |
+
|
63 |
+
def run(self, p, code, indent_level):
|
64 |
+
assert cmd_opts.allow_code, '--allow-code option must be enabled'
|
65 |
+
|
66 |
+
display_result_data = [[], -1, ""]
|
67 |
+
|
68 |
+
def display(imgs, s=display_result_data[1], i=display_result_data[2]):
|
69 |
+
display_result_data[0] = imgs
|
70 |
+
display_result_data[1] = s
|
71 |
+
display_result_data[2] = i
|
72 |
+
|
73 |
+
from types import ModuleType
|
74 |
+
module = ModuleType("testmodule")
|
75 |
+
module.__dict__.update(globals())
|
76 |
+
module.p = p
|
77 |
+
module.display = display
|
78 |
+
|
79 |
+
indent = " " * indent_level
|
80 |
+
indented = code.replace('\n', f"\n{indent}")
|
81 |
+
body = f"""def __webuitemp__():
|
82 |
+
{indent}{indented}
|
83 |
+
__webuitemp__()"""
|
84 |
+
|
85 |
+
result = exec_with_return(body, module)
|
86 |
+
|
87 |
+
if isinstance(result, Processed):
|
88 |
+
return result
|
89 |
+
|
90 |
+
return Processed(p, *display_result_data)
|
scripts/img2imgalt.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from tqdm import trange
|
5 |
+
|
6 |
+
import modules.scripts as scripts
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from modules import processing, shared, sd_samplers, sd_samplers_common
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import k_diffusion as K
|
13 |
+
|
14 |
+
def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
15 |
+
x = p.init_latent
|
16 |
+
|
17 |
+
s_in = x.new_ones([x.shape[0]])
|
18 |
+
if shared.sd_model.parameterization == "v":
|
19 |
+
dnw = K.external.CompVisVDenoiser(shared.sd_model)
|
20 |
+
skip = 1
|
21 |
+
else:
|
22 |
+
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
23 |
+
skip = 0
|
24 |
+
sigmas = dnw.get_sigmas(steps).flip(0)
|
25 |
+
|
26 |
+
shared.state.sampling_steps = steps
|
27 |
+
|
28 |
+
for i in trange(1, len(sigmas)):
|
29 |
+
shared.state.sampling_step += 1
|
30 |
+
|
31 |
+
x_in = torch.cat([x] * 2)
|
32 |
+
sigma_in = torch.cat([sigmas[i] * s_in] * 2)
|
33 |
+
cond_in = torch.cat([uncond, cond])
|
34 |
+
|
35 |
+
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
36 |
+
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
37 |
+
|
38 |
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
|
39 |
+
t = dnw.sigma_to_t(sigma_in)
|
40 |
+
|
41 |
+
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
42 |
+
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
|
43 |
+
|
44 |
+
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
|
45 |
+
|
46 |
+
d = (x - denoised) / sigmas[i]
|
47 |
+
dt = sigmas[i] - sigmas[i - 1]
|
48 |
+
|
49 |
+
x = x + d * dt
|
50 |
+
|
51 |
+
sd_samplers_common.store_latent(x)
|
52 |
+
|
53 |
+
# This shouldn't be necessary, but solved some VRAM issues
|
54 |
+
del x_in, sigma_in, cond_in, c_out, c_in, t,
|
55 |
+
del eps, denoised_uncond, denoised_cond, denoised, d, dt
|
56 |
+
|
57 |
+
shared.state.nextjob()
|
58 |
+
|
59 |
+
return x / x.std()
|
60 |
+
|
61 |
+
|
62 |
+
Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
|
63 |
+
|
64 |
+
|
65 |
+
# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
|
66 |
+
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
67 |
+
x = p.init_latent
|
68 |
+
|
69 |
+
s_in = x.new_ones([x.shape[0]])
|
70 |
+
if shared.sd_model.parameterization == "v":
|
71 |
+
dnw = K.external.CompVisVDenoiser(shared.sd_model)
|
72 |
+
skip = 1
|
73 |
+
else:
|
74 |
+
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
75 |
+
skip = 0
|
76 |
+
sigmas = dnw.get_sigmas(steps).flip(0)
|
77 |
+
|
78 |
+
shared.state.sampling_steps = steps
|
79 |
+
|
80 |
+
for i in trange(1, len(sigmas)):
|
81 |
+
shared.state.sampling_step += 1
|
82 |
+
|
83 |
+
x_in = torch.cat([x] * 2)
|
84 |
+
sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
|
85 |
+
cond_in = torch.cat([uncond, cond])
|
86 |
+
|
87 |
+
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
88 |
+
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
89 |
+
|
90 |
+
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
|
91 |
+
|
92 |
+
if i == 1:
|
93 |
+
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
94 |
+
else:
|
95 |
+
t = dnw.sigma_to_t(sigma_in)
|
96 |
+
|
97 |
+
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
98 |
+
denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
|
99 |
+
|
100 |
+
denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
|
101 |
+
|
102 |
+
if i == 1:
|
103 |
+
d = (x - denoised) / (2 * sigmas[i])
|
104 |
+
else:
|
105 |
+
d = (x - denoised) / sigmas[i - 1]
|
106 |
+
|
107 |
+
dt = sigmas[i] - sigmas[i - 1]
|
108 |
+
x = x + d * dt
|
109 |
+
|
110 |
+
sd_samplers_common.store_latent(x)
|
111 |
+
|
112 |
+
# This shouldn't be necessary, but solved some VRAM issues
|
113 |
+
del x_in, sigma_in, cond_in, c_out, c_in, t,
|
114 |
+
del eps, denoised_uncond, denoised_cond, denoised, d, dt
|
115 |
+
|
116 |
+
shared.state.nextjob()
|
117 |
+
|
118 |
+
return x / sigmas[-1]
|
119 |
+
|
120 |
+
|
121 |
+
class Script(scripts.Script):
|
122 |
+
def __init__(self):
|
123 |
+
self.cache = None
|
124 |
+
|
125 |
+
def title(self):
|
126 |
+
return "img2img alternative test"
|
127 |
+
|
128 |
+
def show(self, is_img2img):
|
129 |
+
return is_img2img
|
130 |
+
|
131 |
+
def ui(self, is_img2img):
|
132 |
+
info = gr.Markdown('''
|
133 |
+
* `CFG Scale` should be 2 or lower.
|
134 |
+
''')
|
135 |
+
|
136 |
+
override_sampler = gr.Checkbox(label="Override `Sampling method` to Euler?(this method is built for it)", value=True, elem_id=self.elem_id("override_sampler"))
|
137 |
+
|
138 |
+
override_prompt = gr.Checkbox(label="Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", value=True, elem_id=self.elem_id("override_prompt"))
|
139 |
+
original_prompt = gr.Textbox(label="Original prompt", lines=1, elem_id=self.elem_id("original_prompt"))
|
140 |
+
original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1, elem_id=self.elem_id("original_negative_prompt"))
|
141 |
+
|
142 |
+
override_steps = gr.Checkbox(label="Override `Sampling Steps` to the same value as `Decode steps`?", value=True, elem_id=self.elem_id("override_steps"))
|
143 |
+
st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50, elem_id=self.elem_id("st"))
|
144 |
+
|
145 |
+
override_strength = gr.Checkbox(label="Override `Denoising strength` to 1?", value=True, elem_id=self.elem_id("override_strength"))
|
146 |
+
|
147 |
+
cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0, elem_id=self.elem_id("cfg"))
|
148 |
+
randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0, elem_id=self.elem_id("randomness"))
|
149 |
+
sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))
|
150 |
+
|
151 |
+
return [
|
152 |
+
info,
|
153 |
+
override_sampler,
|
154 |
+
override_prompt, original_prompt, original_negative_prompt,
|
155 |
+
override_steps, st,
|
156 |
+
override_strength,
|
157 |
+
cfg, randomness, sigma_adjustment,
|
158 |
+
]
|
159 |
+
|
160 |
+
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
|
161 |
+
# Override
|
162 |
+
if override_sampler:
|
163 |
+
p.sampler_name = "Euler"
|
164 |
+
if override_prompt:
|
165 |
+
p.prompt = original_prompt
|
166 |
+
p.negative_prompt = original_negative_prompt
|
167 |
+
if override_steps:
|
168 |
+
p.steps = st
|
169 |
+
if override_strength:
|
170 |
+
p.denoising_strength = 1.0
|
171 |
+
|
172 |
+
def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
|
173 |
+
lat = (p.init_latent.cpu().numpy() * 10).astype(int)
|
174 |
+
|
175 |
+
same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
|
176 |
+
and self.cache.original_prompt == original_prompt \
|
177 |
+
and self.cache.original_negative_prompt == original_negative_prompt \
|
178 |
+
and self.cache.sigma_adjustment == sigma_adjustment
|
179 |
+
same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
|
180 |
+
|
181 |
+
if same_everything:
|
182 |
+
rec_noise = self.cache.noise
|
183 |
+
else:
|
184 |
+
shared.state.job_count += 1
|
185 |
+
cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
|
186 |
+
uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
|
187 |
+
if sigma_adjustment:
|
188 |
+
rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
|
189 |
+
else:
|
190 |
+
rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
|
191 |
+
self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
|
192 |
+
|
193 |
+
rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
|
194 |
+
|
195 |
+
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
|
196 |
+
|
197 |
+
sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
|
198 |
+
|
199 |
+
sigmas = sampler.model_wrap.get_sigmas(p.steps)
|
200 |
+
|
201 |
+
noise_dt = combined_noise - (p.init_latent / sigmas[0])
|
202 |
+
|
203 |
+
p.seed = p.seed + 1
|
204 |
+
|
205 |
+
return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
|
206 |
+
|
207 |
+
p.sample = sample_extra
|
208 |
+
|
209 |
+
p.extra_generation_params["Decode prompt"] = original_prompt
|
210 |
+
p.extra_generation_params["Decode negative prompt"] = original_negative_prompt
|
211 |
+
p.extra_generation_params["Decode CFG scale"] = cfg
|
212 |
+
p.extra_generation_params["Decode steps"] = st
|
213 |
+
p.extra_generation_params["Randomness"] = randomness
|
214 |
+
p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
|
215 |
+
|
216 |
+
processed = processing.process_images(p)
|
217 |
+
|
218 |
+
return processed
|
scripts/loopback.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import modules.scripts as scripts
|
5 |
+
from modules import deepbooru, images, processing, shared
|
6 |
+
from modules.processing import Processed
|
7 |
+
from modules.shared import opts, state
|
8 |
+
|
9 |
+
|
10 |
+
class Script(scripts.Script):
|
11 |
+
def title(self):
|
12 |
+
return "Loopback"
|
13 |
+
|
14 |
+
def show(self, is_img2img):
|
15 |
+
return is_img2img
|
16 |
+
|
17 |
+
def ui(self, is_img2img):
|
18 |
+
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
|
19 |
+
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
|
20 |
+
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
|
21 |
+
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
|
22 |
+
|
23 |
+
return [loops, final_denoising_strength, denoising_curve, append_interrogation]
|
24 |
+
|
25 |
+
def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
|
26 |
+
processing.fix_seed(p)
|
27 |
+
batch_count = p.n_iter
|
28 |
+
p.extra_generation_params = {
|
29 |
+
"Final denoising strength": final_denoising_strength,
|
30 |
+
"Denoising curve": denoising_curve
|
31 |
+
}
|
32 |
+
|
33 |
+
p.batch_size = 1
|
34 |
+
p.n_iter = 1
|
35 |
+
|
36 |
+
info = None
|
37 |
+
initial_seed = None
|
38 |
+
initial_info = None
|
39 |
+
initial_denoising_strength = p.denoising_strength
|
40 |
+
|
41 |
+
grids = []
|
42 |
+
all_images = []
|
43 |
+
original_init_image = p.init_images
|
44 |
+
original_prompt = p.prompt
|
45 |
+
original_inpainting_fill = p.inpainting_fill
|
46 |
+
state.job_count = loops * batch_count
|
47 |
+
|
48 |
+
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
49 |
+
|
50 |
+
def calculate_denoising_strength(loop):
|
51 |
+
strength = initial_denoising_strength
|
52 |
+
|
53 |
+
if loops == 1:
|
54 |
+
return strength
|
55 |
+
|
56 |
+
progress = loop / (loops - 1)
|
57 |
+
if denoising_curve == "Aggressive":
|
58 |
+
strength = math.sin((progress) * math.pi * 0.5)
|
59 |
+
elif denoising_curve == "Lazy":
|
60 |
+
strength = 1 - math.cos((progress) * math.pi * 0.5)
|
61 |
+
else:
|
62 |
+
strength = progress
|
63 |
+
|
64 |
+
change = (final_denoising_strength - initial_denoising_strength) * strength
|
65 |
+
return initial_denoising_strength + change
|
66 |
+
|
67 |
+
history = []
|
68 |
+
|
69 |
+
for n in range(batch_count):
|
70 |
+
# Reset to original init image at the start of each batch
|
71 |
+
p.init_images = original_init_image
|
72 |
+
|
73 |
+
# Reset to original denoising strength
|
74 |
+
p.denoising_strength = initial_denoising_strength
|
75 |
+
|
76 |
+
last_image = None
|
77 |
+
|
78 |
+
for i in range(loops):
|
79 |
+
p.n_iter = 1
|
80 |
+
p.batch_size = 1
|
81 |
+
p.do_not_save_grid = True
|
82 |
+
|
83 |
+
if opts.img2img_color_correction:
|
84 |
+
p.color_corrections = initial_color_corrections
|
85 |
+
|
86 |
+
if append_interrogation != "None":
|
87 |
+
p.prompt = f"{original_prompt}, " if original_prompt else ""
|
88 |
+
if append_interrogation == "CLIP":
|
89 |
+
p.prompt += shared.interrogator.interrogate(p.init_images[0])
|
90 |
+
elif append_interrogation == "DeepBooru":
|
91 |
+
p.prompt += deepbooru.model.tag(p.init_images[0])
|
92 |
+
|
93 |
+
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
|
94 |
+
|
95 |
+
processed = processing.process_images(p)
|
96 |
+
|
97 |
+
# Generation cancelled.
|
98 |
+
if state.interrupted:
|
99 |
+
break
|
100 |
+
|
101 |
+
if initial_seed is None:
|
102 |
+
initial_seed = processed.seed
|
103 |
+
initial_info = processed.info
|
104 |
+
|
105 |
+
p.seed = processed.seed + 1
|
106 |
+
p.denoising_strength = calculate_denoising_strength(i + 1)
|
107 |
+
|
108 |
+
if state.skipped:
|
109 |
+
break
|
110 |
+
|
111 |
+
last_image = processed.images[0]
|
112 |
+
p.init_images = [last_image]
|
113 |
+
p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
|
114 |
+
|
115 |
+
if batch_count == 1:
|
116 |
+
history.append(last_image)
|
117 |
+
all_images.append(last_image)
|
118 |
+
|
119 |
+
if batch_count > 1 and not state.skipped and not state.interrupted:
|
120 |
+
history.append(last_image)
|
121 |
+
all_images.append(last_image)
|
122 |
+
|
123 |
+
p.inpainting_fill = original_inpainting_fill
|
124 |
+
|
125 |
+
if state.interrupted:
|
126 |
+
break
|
127 |
+
|
128 |
+
if len(history) > 1:
|
129 |
+
grid = images.image_grid(history, rows=1)
|
130 |
+
if opts.grid_save:
|
131 |
+
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
132 |
+
|
133 |
+
if opts.return_grid:
|
134 |
+
grids.append(grid)
|
135 |
+
|
136 |
+
all_images = grids + all_images
|
137 |
+
|
138 |
+
processed = Processed(p, all_images, initial_seed, initial_info)
|
139 |
+
|
140 |
+
return processed
|
scripts/outpainting_mk_2.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import skimage
|
5 |
+
|
6 |
+
import modules.scripts as scripts
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image, ImageDraw
|
9 |
+
|
10 |
+
from modules import images
|
11 |
+
from modules.processing import Processed, process_images
|
12 |
+
from modules.shared import opts, state
|
13 |
+
|
14 |
+
|
15 |
+
# this function is taken from https://github.com/parlance-zz/g-diffuser-bot
|
16 |
+
def get_matched_noise(_np_src_image, np_mask_rgb, noise_q=1, color_variation=0.05):
|
17 |
+
# helper fft routines that keep ortho normalization and auto-shift before and after fft
|
18 |
+
def _fft2(data):
|
19 |
+
if data.ndim > 2: # has channels
|
20 |
+
out_fft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
|
21 |
+
for c in range(data.shape[2]):
|
22 |
+
c_data = data[:, :, c]
|
23 |
+
out_fft[:, :, c] = np.fft.fft2(np.fft.fftshift(c_data), norm="ortho")
|
24 |
+
out_fft[:, :, c] = np.fft.ifftshift(out_fft[:, :, c])
|
25 |
+
else: # one channel
|
26 |
+
out_fft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
27 |
+
out_fft[:, :] = np.fft.fft2(np.fft.fftshift(data), norm="ortho")
|
28 |
+
out_fft[:, :] = np.fft.ifftshift(out_fft[:, :])
|
29 |
+
|
30 |
+
return out_fft
|
31 |
+
|
32 |
+
def _ifft2(data):
|
33 |
+
if data.ndim > 2: # has channels
|
34 |
+
out_ifft = np.zeros((data.shape[0], data.shape[1], data.shape[2]), dtype=np.complex128)
|
35 |
+
for c in range(data.shape[2]):
|
36 |
+
c_data = data[:, :, c]
|
37 |
+
out_ifft[:, :, c] = np.fft.ifft2(np.fft.fftshift(c_data), norm="ortho")
|
38 |
+
out_ifft[:, :, c] = np.fft.ifftshift(out_ifft[:, :, c])
|
39 |
+
else: # one channel
|
40 |
+
out_ifft = np.zeros((data.shape[0], data.shape[1]), dtype=np.complex128)
|
41 |
+
out_ifft[:, :] = np.fft.ifft2(np.fft.fftshift(data), norm="ortho")
|
42 |
+
out_ifft[:, :] = np.fft.ifftshift(out_ifft[:, :])
|
43 |
+
|
44 |
+
return out_ifft
|
45 |
+
|
46 |
+
def _get_gaussian_window(width, height, std=3.14, mode=0):
|
47 |
+
window_scale_x = float(width / min(width, height))
|
48 |
+
window_scale_y = float(height / min(width, height))
|
49 |
+
|
50 |
+
window = np.zeros((width, height))
|
51 |
+
x = (np.arange(width) / width * 2. - 1.) * window_scale_x
|
52 |
+
for y in range(height):
|
53 |
+
fy = (y / height * 2. - 1.) * window_scale_y
|
54 |
+
if mode == 0:
|
55 |
+
window[:, y] = np.exp(-(x ** 2 + fy ** 2) * std)
|
56 |
+
else:
|
57 |
+
window[:, y] = (1 / ((x ** 2 + 1.) * (fy ** 2 + 1.))) ** (std / 3.14) # hey wait a minute that's not gaussian
|
58 |
+
|
59 |
+
return window
|
60 |
+
|
61 |
+
def _get_masked_window_rgb(np_mask_grey, hardness=1.):
|
62 |
+
np_mask_rgb = np.zeros((np_mask_grey.shape[0], np_mask_grey.shape[1], 3))
|
63 |
+
if hardness != 1.:
|
64 |
+
hardened = np_mask_grey[:] ** hardness
|
65 |
+
else:
|
66 |
+
hardened = np_mask_grey[:]
|
67 |
+
for c in range(3):
|
68 |
+
np_mask_rgb[:, :, c] = hardened[:]
|
69 |
+
return np_mask_rgb
|
70 |
+
|
71 |
+
width = _np_src_image.shape[0]
|
72 |
+
height = _np_src_image.shape[1]
|
73 |
+
num_channels = _np_src_image.shape[2]
|
74 |
+
|
75 |
+
_np_src_image[:] * (1. - np_mask_rgb)
|
76 |
+
np_mask_grey = (np.sum(np_mask_rgb, axis=2) / 3.)
|
77 |
+
img_mask = np_mask_grey > 1e-6
|
78 |
+
ref_mask = np_mask_grey < 1e-3
|
79 |
+
|
80 |
+
windowed_image = _np_src_image * (1. - _get_masked_window_rgb(np_mask_grey))
|
81 |
+
windowed_image /= np.max(windowed_image)
|
82 |
+
windowed_image += np.average(_np_src_image) * np_mask_rgb # / (1.-np.average(np_mask_rgb)) # rather than leave the masked area black, we get better results from fft by filling the average unmasked color
|
83 |
+
|
84 |
+
src_fft = _fft2(windowed_image) # get feature statistics from masked src img
|
85 |
+
src_dist = np.absolute(src_fft)
|
86 |
+
src_phase = src_fft / src_dist
|
87 |
+
|
88 |
+
# create a generator with a static seed to make outpainting deterministic / only follow global seed
|
89 |
+
rng = np.random.default_rng(0)
|
90 |
+
|
91 |
+
noise_window = _get_gaussian_window(width, height, mode=1) # start with simple gaussian noise
|
92 |
+
noise_rgb = rng.random((width, height, num_channels))
|
93 |
+
noise_grey = (np.sum(noise_rgb, axis=2) / 3.)
|
94 |
+
noise_rgb *= color_variation # the colorfulness of the starting noise is blended to greyscale with a parameter
|
95 |
+
for c in range(num_channels):
|
96 |
+
noise_rgb[:, :, c] += (1. - color_variation) * noise_grey
|
97 |
+
|
98 |
+
noise_fft = _fft2(noise_rgb)
|
99 |
+
for c in range(num_channels):
|
100 |
+
noise_fft[:, :, c] *= noise_window
|
101 |
+
noise_rgb = np.real(_ifft2(noise_fft))
|
102 |
+
shaped_noise_fft = _fft2(noise_rgb)
|
103 |
+
shaped_noise_fft[:, :, :] = np.absolute(shaped_noise_fft[:, :, :]) ** 2 * (src_dist ** noise_q) * src_phase # perform the actual shaping
|
104 |
+
|
105 |
+
brightness_variation = 0. # color_variation # todo: temporarily tieing brightness variation to color variation for now
|
106 |
+
contrast_adjusted_np_src = _np_src_image[:] * (brightness_variation + 1.) - brightness_variation * 2.
|
107 |
+
|
108 |
+
# scikit-image is used for histogram matching, very convenient!
|
109 |
+
shaped_noise = np.real(_ifft2(shaped_noise_fft))
|
110 |
+
shaped_noise -= np.min(shaped_noise)
|
111 |
+
shaped_noise /= np.max(shaped_noise)
|
112 |
+
shaped_noise[img_mask, :] = skimage.exposure.match_histograms(shaped_noise[img_mask, :] ** 1., contrast_adjusted_np_src[ref_mask, :], channel_axis=1)
|
113 |
+
shaped_noise = _np_src_image[:] * (1. - np_mask_rgb) + shaped_noise * np_mask_rgb
|
114 |
+
|
115 |
+
matched_noise = shaped_noise[:]
|
116 |
+
|
117 |
+
return np.clip(matched_noise, 0., 1.)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
class Script(scripts.Script):
|
122 |
+
def title(self):
|
123 |
+
return "Outpainting mk2"
|
124 |
+
|
125 |
+
def show(self, is_img2img):
|
126 |
+
return is_img2img
|
127 |
+
|
128 |
+
def ui(self, is_img2img):
|
129 |
+
if not is_img2img:
|
130 |
+
return None
|
131 |
+
|
132 |
+
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8</p>")
|
133 |
+
|
134 |
+
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
|
135 |
+
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=8, elem_id=self.elem_id("mask_blur"))
|
136 |
+
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
|
137 |
+
noise_q = gr.Slider(label="Fall-off exponent (lower=higher detail)", minimum=0.0, maximum=4.0, step=0.01, value=1.0, elem_id=self.elem_id("noise_q"))
|
138 |
+
color_variation = gr.Slider(label="Color variation", minimum=0.0, maximum=1.0, step=0.01, value=0.05, elem_id=self.elem_id("color_variation"))
|
139 |
+
|
140 |
+
return [info, pixels, mask_blur, direction, noise_q, color_variation]
|
141 |
+
|
142 |
+
def run(self, p, _, pixels, mask_blur, direction, noise_q, color_variation):
|
143 |
+
initial_seed_and_info = [None, None]
|
144 |
+
|
145 |
+
process_width = p.width
|
146 |
+
process_height = p.height
|
147 |
+
|
148 |
+
p.inpaint_full_res = False
|
149 |
+
p.inpainting_fill = 1
|
150 |
+
p.do_not_save_samples = True
|
151 |
+
p.do_not_save_grid = True
|
152 |
+
|
153 |
+
left = pixels if "left" in direction else 0
|
154 |
+
right = pixels if "right" in direction else 0
|
155 |
+
up = pixels if "up" in direction else 0
|
156 |
+
down = pixels if "down" in direction else 0
|
157 |
+
|
158 |
+
if left > 0 or right > 0:
|
159 |
+
mask_blur_x = mask_blur
|
160 |
+
else:
|
161 |
+
mask_blur_x = 0
|
162 |
+
|
163 |
+
if up > 0 or down > 0:
|
164 |
+
mask_blur_y = mask_blur
|
165 |
+
else:
|
166 |
+
mask_blur_y = 0
|
167 |
+
|
168 |
+
p.mask_blur_x = mask_blur_x*4
|
169 |
+
p.mask_blur_y = mask_blur_y*4
|
170 |
+
|
171 |
+
init_img = p.init_images[0]
|
172 |
+
target_w = math.ceil((init_img.width + left + right) / 64) * 64
|
173 |
+
target_h = math.ceil((init_img.height + up + down) / 64) * 64
|
174 |
+
|
175 |
+
if left > 0:
|
176 |
+
left = left * (target_w - init_img.width) // (left + right)
|
177 |
+
|
178 |
+
if right > 0:
|
179 |
+
right = target_w - init_img.width - left
|
180 |
+
|
181 |
+
if up > 0:
|
182 |
+
up = up * (target_h - init_img.height) // (up + down)
|
183 |
+
|
184 |
+
if down > 0:
|
185 |
+
down = target_h - init_img.height - up
|
186 |
+
|
187 |
+
def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
|
188 |
+
is_horiz = is_left or is_right
|
189 |
+
is_vert = is_top or is_bottom
|
190 |
+
pixels_horiz = expand_pixels if is_horiz else 0
|
191 |
+
pixels_vert = expand_pixels if is_vert else 0
|
192 |
+
|
193 |
+
images_to_process = []
|
194 |
+
output_images = []
|
195 |
+
for n in range(count):
|
196 |
+
res_w = init[n].width + pixels_horiz
|
197 |
+
res_h = init[n].height + pixels_vert
|
198 |
+
process_res_w = math.ceil(res_w / 64) * 64
|
199 |
+
process_res_h = math.ceil(res_h / 64) * 64
|
200 |
+
|
201 |
+
img = Image.new("RGB", (process_res_w, process_res_h))
|
202 |
+
img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
|
203 |
+
mask = Image.new("RGB", (process_res_w, process_res_h), "white")
|
204 |
+
draw = ImageDraw.Draw(mask)
|
205 |
+
draw.rectangle((
|
206 |
+
expand_pixels + mask_blur_x if is_left else 0,
|
207 |
+
expand_pixels + mask_blur_y if is_top else 0,
|
208 |
+
mask.width - expand_pixels - mask_blur_x if is_right else res_w,
|
209 |
+
mask.height - expand_pixels - mask_blur_y if is_bottom else res_h,
|
210 |
+
), fill="black")
|
211 |
+
|
212 |
+
np_image = (np.asarray(img) / 255.0).astype(np.float64)
|
213 |
+
np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
|
214 |
+
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
|
215 |
+
output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB"))
|
216 |
+
|
217 |
+
target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
|
218 |
+
target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
|
219 |
+
p.width = target_width if is_horiz else img.width
|
220 |
+
p.height = target_height if is_vert else img.height
|
221 |
+
|
222 |
+
crop_region = (
|
223 |
+
0 if is_left else output_images[n].width - target_width,
|
224 |
+
0 if is_top else output_images[n].height - target_height,
|
225 |
+
target_width if is_left else output_images[n].width,
|
226 |
+
target_height if is_top else output_images[n].height,
|
227 |
+
)
|
228 |
+
mask = mask.crop(crop_region)
|
229 |
+
p.image_mask = mask
|
230 |
+
|
231 |
+
image_to_process = output_images[n].crop(crop_region)
|
232 |
+
images_to_process.append(image_to_process)
|
233 |
+
|
234 |
+
p.init_images = images_to_process
|
235 |
+
|
236 |
+
latent_mask = Image.new("RGB", (p.width, p.height), "white")
|
237 |
+
draw = ImageDraw.Draw(latent_mask)
|
238 |
+
draw.rectangle((
|
239 |
+
expand_pixels + mask_blur_x * 2 if is_left else 0,
|
240 |
+
expand_pixels + mask_blur_y * 2 if is_top else 0,
|
241 |
+
mask.width - expand_pixels - mask_blur_x * 2 if is_right else res_w,
|
242 |
+
mask.height - expand_pixels - mask_blur_y * 2 if is_bottom else res_h,
|
243 |
+
), fill="black")
|
244 |
+
p.latent_mask = latent_mask
|
245 |
+
|
246 |
+
proc = process_images(p)
|
247 |
+
|
248 |
+
if initial_seed_and_info[0] is None:
|
249 |
+
initial_seed_and_info[0] = proc.seed
|
250 |
+
initial_seed_and_info[1] = proc.info
|
251 |
+
|
252 |
+
for n in range(count):
|
253 |
+
output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height))
|
254 |
+
output_images[n] = output_images[n].crop((0, 0, res_w, res_h))
|
255 |
+
|
256 |
+
return output_images
|
257 |
+
|
258 |
+
batch_count = p.n_iter
|
259 |
+
batch_size = p.batch_size
|
260 |
+
p.n_iter = 1
|
261 |
+
state.job_count = batch_count * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
|
262 |
+
all_processed_images = []
|
263 |
+
|
264 |
+
for i in range(batch_count):
|
265 |
+
imgs = [init_img] * batch_size
|
266 |
+
state.job = f"Batch {i + 1} out of {batch_count}"
|
267 |
+
|
268 |
+
if left > 0:
|
269 |
+
imgs = expand(imgs, batch_size, left, is_left=True)
|
270 |
+
if right > 0:
|
271 |
+
imgs = expand(imgs, batch_size, right, is_right=True)
|
272 |
+
if up > 0:
|
273 |
+
imgs = expand(imgs, batch_size, up, is_top=True)
|
274 |
+
if down > 0:
|
275 |
+
imgs = expand(imgs, batch_size, down, is_bottom=True)
|
276 |
+
|
277 |
+
all_processed_images += imgs
|
278 |
+
|
279 |
+
all_images = all_processed_images
|
280 |
+
|
281 |
+
combined_grid_image = images.image_grid(all_processed_images)
|
282 |
+
unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple
|
283 |
+
if opts.return_grid and not unwanted_grid_because_of_img_count:
|
284 |
+
all_images = [combined_grid_image] + all_processed_images
|
285 |
+
|
286 |
+
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
|
287 |
+
|
288 |
+
if opts.samples_save:
|
289 |
+
for img in all_processed_images:
|
290 |
+
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.samples_format, info=res.info, p=p)
|
291 |
+
|
292 |
+
if opts.grid_save and not unwanted_grid_because_of_img_count:
|
293 |
+
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
294 |
+
|
295 |
+
return res
|
scripts/poor_mans_outpainting.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import modules.scripts as scripts
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
|
7 |
+
from modules import images, devices
|
8 |
+
from modules.processing import Processed, process_images
|
9 |
+
from modules.shared import opts, state
|
10 |
+
|
11 |
+
|
12 |
+
class Script(scripts.Script):
|
13 |
+
def title(self):
|
14 |
+
return "Poor man's outpainting"
|
15 |
+
|
16 |
+
def show(self, is_img2img):
|
17 |
+
return is_img2img
|
18 |
+
|
19 |
+
def ui(self, is_img2img):
|
20 |
+
if not is_img2img:
|
21 |
+
return None
|
22 |
+
|
23 |
+
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
|
24 |
+
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur"))
|
25 |
+
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill"))
|
26 |
+
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
|
27 |
+
|
28 |
+
return [pixels, mask_blur, inpainting_fill, direction]
|
29 |
+
|
30 |
+
def run(self, p, pixels, mask_blur, inpainting_fill, direction):
|
31 |
+
initial_seed = None
|
32 |
+
initial_info = None
|
33 |
+
|
34 |
+
p.mask_blur = mask_blur * 2
|
35 |
+
p.inpainting_fill = inpainting_fill
|
36 |
+
p.inpaint_full_res = False
|
37 |
+
|
38 |
+
left = pixels if "left" in direction else 0
|
39 |
+
right = pixels if "right" in direction else 0
|
40 |
+
up = pixels if "up" in direction else 0
|
41 |
+
down = pixels if "down" in direction else 0
|
42 |
+
|
43 |
+
init_img = p.init_images[0]
|
44 |
+
target_w = math.ceil((init_img.width + left + right) / 64) * 64
|
45 |
+
target_h = math.ceil((init_img.height + up + down) / 64) * 64
|
46 |
+
|
47 |
+
if left > 0:
|
48 |
+
left = left * (target_w - init_img.width) // (left + right)
|
49 |
+
if right > 0:
|
50 |
+
right = target_w - init_img.width - left
|
51 |
+
|
52 |
+
if up > 0:
|
53 |
+
up = up * (target_h - init_img.height) // (up + down)
|
54 |
+
|
55 |
+
if down > 0:
|
56 |
+
down = target_h - init_img.height - up
|
57 |
+
|
58 |
+
img = Image.new("RGB", (target_w, target_h))
|
59 |
+
img.paste(init_img, (left, up))
|
60 |
+
|
61 |
+
mask = Image.new("L", (img.width, img.height), "white")
|
62 |
+
draw = ImageDraw.Draw(mask)
|
63 |
+
draw.rectangle((
|
64 |
+
left + (mask_blur * 2 if left > 0 else 0),
|
65 |
+
up + (mask_blur * 2 if up > 0 else 0),
|
66 |
+
mask.width - right - (mask_blur * 2 if right > 0 else 0),
|
67 |
+
mask.height - down - (mask_blur * 2 if down > 0 else 0)
|
68 |
+
), fill="black")
|
69 |
+
|
70 |
+
latent_mask = Image.new("L", (img.width, img.height), "white")
|
71 |
+
latent_draw = ImageDraw.Draw(latent_mask)
|
72 |
+
latent_draw.rectangle((
|
73 |
+
left + (mask_blur//2 if left > 0 else 0),
|
74 |
+
up + (mask_blur//2 if up > 0 else 0),
|
75 |
+
mask.width - right - (mask_blur//2 if right > 0 else 0),
|
76 |
+
mask.height - down - (mask_blur//2 if down > 0 else 0)
|
77 |
+
), fill="black")
|
78 |
+
|
79 |
+
devices.torch_gc()
|
80 |
+
|
81 |
+
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
82 |
+
grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
83 |
+
grid_latent_mask = images.split_grid(latent_mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
|
84 |
+
|
85 |
+
p.n_iter = 1
|
86 |
+
p.batch_size = 1
|
87 |
+
p.do_not_save_grid = True
|
88 |
+
p.do_not_save_samples = True
|
89 |
+
|
90 |
+
work = []
|
91 |
+
work_mask = []
|
92 |
+
work_latent_mask = []
|
93 |
+
work_results = []
|
94 |
+
|
95 |
+
for (y, h, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles):
|
96 |
+
for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask):
|
97 |
+
x, w = tiledata[0:2]
|
98 |
+
|
99 |
+
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
|
100 |
+
continue
|
101 |
+
|
102 |
+
work.append(tiledata[2])
|
103 |
+
work_mask.append(tiledata_mask[2])
|
104 |
+
work_latent_mask.append(tiledata_latent_mask[2])
|
105 |
+
|
106 |
+
batch_count = len(work)
|
107 |
+
print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.")
|
108 |
+
|
109 |
+
state.job_count = batch_count
|
110 |
+
|
111 |
+
for i in range(batch_count):
|
112 |
+
p.init_images = [work[i]]
|
113 |
+
p.image_mask = work_mask[i]
|
114 |
+
p.latent_mask = work_latent_mask[i]
|
115 |
+
|
116 |
+
state.job = f"Batch {i + 1} out of {batch_count}"
|
117 |
+
processed = process_images(p)
|
118 |
+
|
119 |
+
if initial_seed is None:
|
120 |
+
initial_seed = processed.seed
|
121 |
+
initial_info = processed.info
|
122 |
+
|
123 |
+
p.seed = processed.seed + 1
|
124 |
+
work_results += processed.images
|
125 |
+
|
126 |
+
|
127 |
+
image_index = 0
|
128 |
+
for y, h, row in grid.tiles:
|
129 |
+
for tiledata in row:
|
130 |
+
x, w = tiledata[0:2]
|
131 |
+
|
132 |
+
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
|
133 |
+
continue
|
134 |
+
|
135 |
+
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
136 |
+
image_index += 1
|
137 |
+
|
138 |
+
combined_image = images.combine_grid(grid)
|
139 |
+
|
140 |
+
if opts.samples_save:
|
141 |
+
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
|
142 |
+
|
143 |
+
processed = Processed(p, [combined_image], initial_seed, initial_info)
|
144 |
+
|
145 |
+
return processed
|
146 |
+
|
scripts/postprocessing_codeformer.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from modules import scripts_postprocessing, codeformer_model
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from modules.ui_components import FormRow
|
8 |
+
|
9 |
+
|
10 |
+
class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing):
|
11 |
+
name = "CodeFormer"
|
12 |
+
order = 3000
|
13 |
+
|
14 |
+
def ui(self):
|
15 |
+
with FormRow():
|
16 |
+
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, elem_id="extras_codeformer_visibility")
|
17 |
+
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
|
18 |
+
|
19 |
+
return {
|
20 |
+
"codeformer_visibility": codeformer_visibility,
|
21 |
+
"codeformer_weight": codeformer_weight,
|
22 |
+
}
|
23 |
+
|
24 |
+
def process(self, pp: scripts_postprocessing.PostprocessedImage, codeformer_visibility, codeformer_weight):
|
25 |
+
if codeformer_visibility == 0:
|
26 |
+
return
|
27 |
+
|
28 |
+
restored_img = codeformer_model.codeformer.restore(np.array(pp.image, dtype=np.uint8), w=codeformer_weight)
|
29 |
+
res = Image.fromarray(restored_img)
|
30 |
+
|
31 |
+
if codeformer_visibility < 1.0:
|
32 |
+
res = Image.blend(pp.image, res, codeformer_visibility)
|
33 |
+
|
34 |
+
pp.image = res
|
35 |
+
pp.info["CodeFormer visibility"] = round(codeformer_visibility, 3)
|
36 |
+
pp.info["CodeFormer weight"] = round(codeformer_weight, 3)
|
scripts/postprocessing_gfpgan.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from modules import scripts_postprocessing, gfpgan_model
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from modules.ui_components import FormRow
|
8 |
+
|
9 |
+
|
10 |
+
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
|
11 |
+
name = "GFPGAN"
|
12 |
+
order = 2000
|
13 |
+
|
14 |
+
def ui(self):
|
15 |
+
with FormRow():
|
16 |
+
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility")
|
17 |
+
|
18 |
+
return {
|
19 |
+
"gfpgan_visibility": gfpgan_visibility,
|
20 |
+
}
|
21 |
+
|
22 |
+
def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility):
|
23 |
+
if gfpgan_visibility == 0:
|
24 |
+
return
|
25 |
+
|
26 |
+
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8))
|
27 |
+
res = Image.fromarray(restored_img)
|
28 |
+
|
29 |
+
if gfpgan_visibility < 1.0:
|
30 |
+
res = Image.blend(pp.image, res, gfpgan_visibility)
|
31 |
+
|
32 |
+
pp.image = res
|
33 |
+
pp.info["GFPGAN visibility"] = round(gfpgan_visibility, 3)
|
scripts/postprocessing_upscale.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from modules import scripts_postprocessing, shared
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
from modules.ui_components import FormRow, ToolButton
|
8 |
+
from modules.ui import switch_values_symbol
|
9 |
+
|
10 |
+
upscale_cache = {}
|
11 |
+
|
12 |
+
|
13 |
+
class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
|
14 |
+
name = "Upscale"
|
15 |
+
order = 1000
|
16 |
+
|
17 |
+
def ui(self):
|
18 |
+
selected_tab = gr.State(value=0)
|
19 |
+
|
20 |
+
with gr.Column():
|
21 |
+
with FormRow():
|
22 |
+
with gr.Tabs(elem_id="extras_resize_mode"):
|
23 |
+
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
|
24 |
+
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
|
25 |
+
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
|
26 |
+
with gr.Row(elem_id="upscaling_column_size"):
|
27 |
+
upscaling_resize_w = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
|
28 |
+
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn")
|
29 |
+
upscaling_resize_h = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
|
30 |
+
with gr.Row(elem_id="upscaling_dimensions_row", elem_classes="dimensions-tools"):
|
31 |
+
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
|
32 |
+
with FormRow():
|
33 |
+
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
34 |
+
with FormRow():
|
35 |
+
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
36 |
+
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
|
37 |
+
|
38 |
+
upscaling_res_switch_btn.click(lambda w, h: (h, w), inputs=[upscaling_resize_w, upscaling_resize_h], outputs=[upscaling_resize_w, upscaling_resize_h], show_progress=False)
|
39 |
+
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
|
40 |
+
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])
|
41 |
+
|
42 |
+
return {
|
43 |
+
"upscale_mode": selected_tab,
|
44 |
+
"upscale_by": upscaling_resize,
|
45 |
+
"upscale_to_width": upscaling_resize_w,
|
46 |
+
"upscale_to_height": upscaling_resize_h,
|
47 |
+
"upscale_crop": upscaling_crop,
|
48 |
+
"upscaler_1_name": extras_upscaler_1,
|
49 |
+
"upscaler_2_name": extras_upscaler_2,
|
50 |
+
"upscaler_2_visibility": extras_upscaler_2_visibility,
|
51 |
+
}
|
52 |
+
|
53 |
+
def upscale(self, image, info, upscaler, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop):
|
54 |
+
if upscale_mode == 1:
|
55 |
+
upscale_by = max(upscale_to_width/image.width, upscale_to_height/image.height)
|
56 |
+
info["Postprocess upscale to"] = f"{upscale_to_width}x{upscale_to_height}"
|
57 |
+
else:
|
58 |
+
info["Postprocess upscale by"] = upscale_by
|
59 |
+
|
60 |
+
cache_key = (hash(np.array(image.getdata()).tobytes()), upscaler.name, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
|
61 |
+
cached_image = upscale_cache.pop(cache_key, None)
|
62 |
+
|
63 |
+
if cached_image is not None:
|
64 |
+
image = cached_image
|
65 |
+
else:
|
66 |
+
image = upscaler.scaler.upscale(image, upscale_by, upscaler.data_path)
|
67 |
+
|
68 |
+
upscale_cache[cache_key] = image
|
69 |
+
if len(upscale_cache) > shared.opts.upscaling_max_images_in_cache:
|
70 |
+
upscale_cache.pop(next(iter(upscale_cache), None), None)
|
71 |
+
|
72 |
+
if upscale_mode == 1 and upscale_crop:
|
73 |
+
cropped = Image.new("RGB", (upscale_to_width, upscale_to_height))
|
74 |
+
cropped.paste(image, box=(upscale_to_width // 2 - image.width // 2, upscale_to_height // 2 - image.height // 2))
|
75 |
+
image = cropped
|
76 |
+
info["Postprocess crop to"] = f"{image.width}x{image.height}"
|
77 |
+
|
78 |
+
return image
|
79 |
+
|
80 |
+
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
|
81 |
+
if upscaler_1_name == "None":
|
82 |
+
upscaler_1_name = None
|
83 |
+
|
84 |
+
upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_1_name]), None)
|
85 |
+
assert upscaler1 or (upscaler_1_name is None), f'could not find upscaler named {upscaler_1_name}'
|
86 |
+
|
87 |
+
if not upscaler1:
|
88 |
+
return
|
89 |
+
|
90 |
+
if upscaler_2_name == "None":
|
91 |
+
upscaler_2_name = None
|
92 |
+
|
93 |
+
upscaler2 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_2_name and x.name != "None"]), None)
|
94 |
+
assert upscaler2 or (upscaler_2_name is None), f'could not find upscaler named {upscaler_2_name}'
|
95 |
+
|
96 |
+
upscaled_image = self.upscale(pp.image, pp.info, upscaler1, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
|
97 |
+
pp.info["Postprocess upscaler"] = upscaler1.name
|
98 |
+
|
99 |
+
if upscaler2 and upscaler_2_visibility > 0:
|
100 |
+
second_upscale = self.upscale(pp.image, pp.info, upscaler2, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
|
101 |
+
upscaled_image = Image.blend(upscaled_image, second_upscale, upscaler_2_visibility)
|
102 |
+
|
103 |
+
pp.info["Postprocess upscaler 2"] = upscaler2.name
|
104 |
+
|
105 |
+
pp.image = upscaled_image
|
106 |
+
|
107 |
+
def image_changed(self):
|
108 |
+
upscale_cache.clear()
|
109 |
+
|
110 |
+
|
111 |
+
class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
|
112 |
+
name = "Simple Upscale"
|
113 |
+
order = 900
|
114 |
+
|
115 |
+
def ui(self):
|
116 |
+
with FormRow():
|
117 |
+
upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
|
118 |
+
upscale_by = gr.Slider(minimum=0.05, maximum=8.0, step=0.05, label="Upscale by", value=2)
|
119 |
+
|
120 |
+
return {
|
121 |
+
"upscale_by": upscale_by,
|
122 |
+
"upscaler_name": upscaler_name,
|
123 |
+
}
|
124 |
+
|
125 |
+
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
|
126 |
+
if upscaler_name is None or upscaler_name == "None":
|
127 |
+
return
|
128 |
+
|
129 |
+
upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_name]), None)
|
130 |
+
assert upscaler1, f'could not find upscaler named {upscaler_name}'
|
131 |
+
|
132 |
+
pp.image = self.upscale(pp.image, pp.info, upscaler1, 0, upscale_by, 0, 0, False)
|
133 |
+
pp.info["Postprocess upscaler"] = upscaler1.name
|
scripts/prompt_matrix.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import modules.scripts as scripts
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
from modules import images
|
7 |
+
from modules.processing import process_images
|
8 |
+
from modules.shared import opts, state
|
9 |
+
import modules.sd_samplers
|
10 |
+
|
11 |
+
|
12 |
+
def draw_xy_grid(xs, ys, x_label, y_label, cell):
|
13 |
+
res = []
|
14 |
+
|
15 |
+
ver_texts = [[images.GridAnnotation(y_label(y))] for y in ys]
|
16 |
+
hor_texts = [[images.GridAnnotation(x_label(x))] for x in xs]
|
17 |
+
|
18 |
+
first_processed = None
|
19 |
+
|
20 |
+
state.job_count = len(xs) * len(ys)
|
21 |
+
|
22 |
+
for iy, y in enumerate(ys):
|
23 |
+
for ix, x in enumerate(xs):
|
24 |
+
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
25 |
+
|
26 |
+
processed = cell(x, y)
|
27 |
+
if first_processed is None:
|
28 |
+
first_processed = processed
|
29 |
+
|
30 |
+
res.append(processed.images[0])
|
31 |
+
|
32 |
+
grid = images.image_grid(res, rows=len(ys))
|
33 |
+
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
|
34 |
+
|
35 |
+
first_processed.images = [grid]
|
36 |
+
|
37 |
+
return first_processed
|
38 |
+
|
39 |
+
|
40 |
+
class Script(scripts.Script):
|
41 |
+
def title(self):
|
42 |
+
return "Prompt matrix"
|
43 |
+
|
44 |
+
def ui(self, is_img2img):
|
45 |
+
gr.HTML('<br />')
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column():
|
48 |
+
put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start"))
|
49 |
+
different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
|
50 |
+
with gr.Column():
|
51 |
+
prompt_type = gr.Radio(["positive", "negative"], label="Select prompt", elem_id=self.elem_id("prompt_type"), value="positive")
|
52 |
+
variations_delimiter = gr.Radio(["comma", "space"], label="Select joining char", elem_id=self.elem_id("variations_delimiter"), value="comma")
|
53 |
+
with gr.Column():
|
54 |
+
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
55 |
+
|
56 |
+
return [put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size]
|
57 |
+
|
58 |
+
def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter, margin_size):
|
59 |
+
modules.processing.fix_seed(p)
|
60 |
+
# Raise error if promp type is not positive or negative
|
61 |
+
if prompt_type not in ["positive", "negative"]:
|
62 |
+
raise ValueError(f"Unknown prompt type {prompt_type}")
|
63 |
+
# Raise error if variations delimiter is not comma or space
|
64 |
+
if variations_delimiter not in ["comma", "space"]:
|
65 |
+
raise ValueError(f"Unknown variations delimiter {variations_delimiter}")
|
66 |
+
|
67 |
+
prompt = p.prompt if prompt_type == "positive" else p.negative_prompt
|
68 |
+
original_prompt = prompt[0] if type(prompt) == list else prompt
|
69 |
+
positive_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
|
70 |
+
|
71 |
+
delimiter = ", " if variations_delimiter == "comma" else " "
|
72 |
+
|
73 |
+
all_prompts = []
|
74 |
+
prompt_matrix_parts = original_prompt.split("|")
|
75 |
+
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
|
76 |
+
for combination_num in range(combination_count):
|
77 |
+
selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1 << n)]
|
78 |
+
|
79 |
+
if put_at_start:
|
80 |
+
selected_prompts = selected_prompts + [prompt_matrix_parts[0]]
|
81 |
+
else:
|
82 |
+
selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
|
83 |
+
|
84 |
+
all_prompts.append(delimiter.join(selected_prompts))
|
85 |
+
|
86 |
+
p.n_iter = math.ceil(len(all_prompts) / p.batch_size)
|
87 |
+
p.do_not_save_grid = True
|
88 |
+
|
89 |
+
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
|
90 |
+
|
91 |
+
if prompt_type == "positive":
|
92 |
+
p.prompt = all_prompts
|
93 |
+
else:
|
94 |
+
p.negative_prompt = all_prompts
|
95 |
+
p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))]
|
96 |
+
p.prompt_for_display = positive_prompt
|
97 |
+
processed = process_images(p)
|
98 |
+
|
99 |
+
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
|
100 |
+
grid = images.draw_prompt_matrix(grid, processed.images[0].width, processed.images[0].height, prompt_matrix_parts, margin_size)
|
101 |
+
processed.images.insert(0, grid)
|
102 |
+
processed.index_of_first_image = 1
|
103 |
+
processed.infotexts.insert(0, processed.infotexts[0])
|
104 |
+
|
105 |
+
if opts.grid_save:
|
106 |
+
images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p)
|
107 |
+
|
108 |
+
return processed
|
scripts/prompts_from_file.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import random
|
3 |
+
import shlex
|
4 |
+
|
5 |
+
import modules.scripts as scripts
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from modules import sd_samplers, errors
|
9 |
+
from modules.processing import Processed, process_images
|
10 |
+
from modules.shared import state
|
11 |
+
|
12 |
+
|
13 |
+
def process_string_tag(tag):
|
14 |
+
return tag
|
15 |
+
|
16 |
+
|
17 |
+
def process_int_tag(tag):
|
18 |
+
return int(tag)
|
19 |
+
|
20 |
+
|
21 |
+
def process_float_tag(tag):
|
22 |
+
return float(tag)
|
23 |
+
|
24 |
+
|
25 |
+
def process_boolean_tag(tag):
|
26 |
+
return True if (tag == "true") else False
|
27 |
+
|
28 |
+
|
29 |
+
prompt_tags = {
|
30 |
+
"sd_model": None,
|
31 |
+
"outpath_samples": process_string_tag,
|
32 |
+
"outpath_grids": process_string_tag,
|
33 |
+
"prompt_for_display": process_string_tag,
|
34 |
+
"prompt": process_string_tag,
|
35 |
+
"negative_prompt": process_string_tag,
|
36 |
+
"styles": process_string_tag,
|
37 |
+
"seed": process_int_tag,
|
38 |
+
"subseed_strength": process_float_tag,
|
39 |
+
"subseed": process_int_tag,
|
40 |
+
"seed_resize_from_h": process_int_tag,
|
41 |
+
"seed_resize_from_w": process_int_tag,
|
42 |
+
"sampler_index": process_int_tag,
|
43 |
+
"sampler_name": process_string_tag,
|
44 |
+
"batch_size": process_int_tag,
|
45 |
+
"n_iter": process_int_tag,
|
46 |
+
"steps": process_int_tag,
|
47 |
+
"cfg_scale": process_float_tag,
|
48 |
+
"width": process_int_tag,
|
49 |
+
"height": process_int_tag,
|
50 |
+
"restore_faces": process_boolean_tag,
|
51 |
+
"tiling": process_boolean_tag,
|
52 |
+
"do_not_save_samples": process_boolean_tag,
|
53 |
+
"do_not_save_grid": process_boolean_tag
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
def cmdargs(line):
|
58 |
+
args = shlex.split(line)
|
59 |
+
pos = 0
|
60 |
+
res = {}
|
61 |
+
|
62 |
+
while pos < len(args):
|
63 |
+
arg = args[pos]
|
64 |
+
|
65 |
+
assert arg.startswith("--"), f'must start with "--": {arg}'
|
66 |
+
assert pos+1 < len(args), f'missing argument for command line option {arg}'
|
67 |
+
|
68 |
+
tag = arg[2:]
|
69 |
+
|
70 |
+
if tag == "prompt" or tag == "negative_prompt":
|
71 |
+
pos += 1
|
72 |
+
prompt = args[pos]
|
73 |
+
pos += 1
|
74 |
+
while pos < len(args) and not args[pos].startswith("--"):
|
75 |
+
prompt += " "
|
76 |
+
prompt += args[pos]
|
77 |
+
pos += 1
|
78 |
+
res[tag] = prompt
|
79 |
+
continue
|
80 |
+
|
81 |
+
|
82 |
+
func = prompt_tags.get(tag, None)
|
83 |
+
assert func, f'unknown commandline option: {arg}'
|
84 |
+
|
85 |
+
val = args[pos+1]
|
86 |
+
if tag == "sampler_name":
|
87 |
+
val = sd_samplers.samplers_map.get(val.lower(), None)
|
88 |
+
|
89 |
+
res[tag] = func(val)
|
90 |
+
|
91 |
+
pos += 2
|
92 |
+
|
93 |
+
return res
|
94 |
+
|
95 |
+
|
96 |
+
def load_prompt_file(file):
|
97 |
+
if file is None:
|
98 |
+
return None, gr.update(), gr.update(lines=7)
|
99 |
+
else:
|
100 |
+
lines = [x.strip() for x in file.decode('utf8', errors='ignore').split("\n")]
|
101 |
+
return None, "\n".join(lines), gr.update(lines=7)
|
102 |
+
|
103 |
+
|
104 |
+
class Script(scripts.Script):
|
105 |
+
def title(self):
|
106 |
+
return "Prompts from file or textbox"
|
107 |
+
|
108 |
+
def ui(self, is_img2img):
|
109 |
+
checkbox_iterate = gr.Checkbox(label="Iterate seed every line", value=False, elem_id=self.elem_id("checkbox_iterate"))
|
110 |
+
checkbox_iterate_batch = gr.Checkbox(label="Use same random seed for all lines", value=False, elem_id=self.elem_id("checkbox_iterate_batch"))
|
111 |
+
|
112 |
+
prompt_txt = gr.Textbox(label="List of prompt inputs", lines=1, elem_id=self.elem_id("prompt_txt"))
|
113 |
+
file = gr.File(label="Upload prompt inputs", type='binary', elem_id=self.elem_id("file"))
|
114 |
+
|
115 |
+
file.change(fn=load_prompt_file, inputs=[file], outputs=[file, prompt_txt, prompt_txt], show_progress=False)
|
116 |
+
|
117 |
+
# We start at one line. When the text changes, we jump to seven lines, or two lines if no \n.
|
118 |
+
# We don't shrink back to 1, because that causes the control to ignore [enter], and it may
|
119 |
+
# be unclear to the user that shift-enter is needed.
|
120 |
+
prompt_txt.change(lambda tb: gr.update(lines=7) if ("\n" in tb) else gr.update(lines=2), inputs=[prompt_txt], outputs=[prompt_txt], show_progress=False)
|
121 |
+
return [checkbox_iterate, checkbox_iterate_batch, prompt_txt]
|
122 |
+
|
123 |
+
def run(self, p, checkbox_iterate, checkbox_iterate_batch, prompt_txt: str):
|
124 |
+
lines = [x for x in (x.strip() for x in prompt_txt.splitlines()) if x]
|
125 |
+
|
126 |
+
p.do_not_save_grid = True
|
127 |
+
|
128 |
+
job_count = 0
|
129 |
+
jobs = []
|
130 |
+
|
131 |
+
for line in lines:
|
132 |
+
if "--" in line:
|
133 |
+
try:
|
134 |
+
args = cmdargs(line)
|
135 |
+
except Exception:
|
136 |
+
errors.report(f"Error parsing line {line} as commandline", exc_info=True)
|
137 |
+
args = {"prompt": line}
|
138 |
+
else:
|
139 |
+
args = {"prompt": line}
|
140 |
+
|
141 |
+
job_count += args.get("n_iter", p.n_iter)
|
142 |
+
|
143 |
+
jobs.append(args)
|
144 |
+
|
145 |
+
print(f"Will process {len(lines)} lines in {job_count} jobs.")
|
146 |
+
if (checkbox_iterate or checkbox_iterate_batch) and p.seed == -1:
|
147 |
+
p.seed = int(random.randrange(4294967294))
|
148 |
+
|
149 |
+
state.job_count = job_count
|
150 |
+
|
151 |
+
images = []
|
152 |
+
all_prompts = []
|
153 |
+
infotexts = []
|
154 |
+
for args in jobs:
|
155 |
+
state.job = f"{state.job_no + 1} out of {state.job_count}"
|
156 |
+
|
157 |
+
copy_p = copy.copy(p)
|
158 |
+
for k, v in args.items():
|
159 |
+
setattr(copy_p, k, v)
|
160 |
+
|
161 |
+
proc = process_images(copy_p)
|
162 |
+
images += proc.images
|
163 |
+
|
164 |
+
if checkbox_iterate:
|
165 |
+
p.seed = p.seed + (p.batch_size * p.n_iter)
|
166 |
+
all_prompts += proc.all_prompts
|
167 |
+
infotexts += proc.infotexts
|
168 |
+
|
169 |
+
return Processed(p, images, p.seed, "", all_prompts=all_prompts, infotexts=infotexts)
|
scripts/sd_upscale.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import modules.scripts as scripts
|
4 |
+
import gradio as gr
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
from modules import processing, shared, images, devices
|
8 |
+
from modules.processing import Processed
|
9 |
+
from modules.shared import opts, state
|
10 |
+
|
11 |
+
|
12 |
+
class Script(scripts.Script):
|
13 |
+
def title(self):
|
14 |
+
return "SD upscale"
|
15 |
+
|
16 |
+
def show(self, is_img2img):
|
17 |
+
return is_img2img
|
18 |
+
|
19 |
+
def ui(self, is_img2img):
|
20 |
+
info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>")
|
21 |
+
overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap"))
|
22 |
+
scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor"))
|
23 |
+
upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index"))
|
24 |
+
|
25 |
+
return [info, overlap, upscaler_index, scale_factor]
|
26 |
+
|
27 |
+
def run(self, p, _, overlap, upscaler_index, scale_factor):
|
28 |
+
if isinstance(upscaler_index, str):
|
29 |
+
upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
|
30 |
+
processing.fix_seed(p)
|
31 |
+
upscaler = shared.sd_upscalers[upscaler_index]
|
32 |
+
|
33 |
+
p.extra_generation_params["SD upscale overlap"] = overlap
|
34 |
+
p.extra_generation_params["SD upscale upscaler"] = upscaler.name
|
35 |
+
|
36 |
+
initial_info = None
|
37 |
+
seed = p.seed
|
38 |
+
|
39 |
+
init_img = p.init_images[0]
|
40 |
+
init_img = images.flatten(init_img, opts.img2img_background_color)
|
41 |
+
|
42 |
+
if upscaler.name != "None":
|
43 |
+
img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
|
44 |
+
else:
|
45 |
+
img = init_img
|
46 |
+
|
47 |
+
devices.torch_gc()
|
48 |
+
|
49 |
+
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)
|
50 |
+
|
51 |
+
batch_size = p.batch_size
|
52 |
+
upscale_count = p.n_iter
|
53 |
+
p.n_iter = 1
|
54 |
+
p.do_not_save_grid = True
|
55 |
+
p.do_not_save_samples = True
|
56 |
+
|
57 |
+
work = []
|
58 |
+
|
59 |
+
for _y, _h, row in grid.tiles:
|
60 |
+
for tiledata in row:
|
61 |
+
work.append(tiledata[2])
|
62 |
+
|
63 |
+
batch_count = math.ceil(len(work) / batch_size)
|
64 |
+
state.job_count = batch_count * upscale_count
|
65 |
+
|
66 |
+
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
|
67 |
+
|
68 |
+
result_images = []
|
69 |
+
for n in range(upscale_count):
|
70 |
+
start_seed = seed + n
|
71 |
+
p.seed = start_seed
|
72 |
+
|
73 |
+
work_results = []
|
74 |
+
for i in range(batch_count):
|
75 |
+
p.batch_size = batch_size
|
76 |
+
p.init_images = work[i * batch_size:(i + 1) * batch_size]
|
77 |
+
|
78 |
+
state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
|
79 |
+
processed = processing.process_images(p)
|
80 |
+
|
81 |
+
if initial_info is None:
|
82 |
+
initial_info = processed.info
|
83 |
+
|
84 |
+
p.seed = processed.seed + 1
|
85 |
+
work_results += processed.images
|
86 |
+
|
87 |
+
image_index = 0
|
88 |
+
for _y, _h, row in grid.tiles:
|
89 |
+
for tiledata in row:
|
90 |
+
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
91 |
+
image_index += 1
|
92 |
+
|
93 |
+
combined_image = images.combine_grid(grid)
|
94 |
+
result_images.append(combined_image)
|
95 |
+
|
96 |
+
if opts.samples_save:
|
97 |
+
images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
|
98 |
+
|
99 |
+
processed = Processed(p, result_images, seed, initial_info)
|
100 |
+
|
101 |
+
return processed
|
scripts/xyz_grid.py
ADDED
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from copy import copy
|
3 |
+
from itertools import permutations, chain
|
4 |
+
import random
|
5 |
+
import csv
|
6 |
+
from io import StringIO
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
import modules.scripts as scripts
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion
|
14 |
+
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
|
15 |
+
from modules.shared import opts, state
|
16 |
+
import modules.shared as shared
|
17 |
+
import modules.sd_samplers
|
18 |
+
import modules.sd_models
|
19 |
+
import modules.sd_vae
|
20 |
+
import re
|
21 |
+
|
22 |
+
from modules.ui_components import ToolButton
|
23 |
+
|
24 |
+
fill_values_symbol = "\U0001f4d2" # 📒
|
25 |
+
|
26 |
+
AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
|
27 |
+
|
28 |
+
|
29 |
+
def apply_field(field):
|
30 |
+
def fun(p, x, xs):
|
31 |
+
setattr(p, field, x)
|
32 |
+
|
33 |
+
return fun
|
34 |
+
|
35 |
+
|
36 |
+
def apply_prompt(p, x, xs):
|
37 |
+
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
|
38 |
+
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
|
39 |
+
|
40 |
+
p.prompt = p.prompt.replace(xs[0], x)
|
41 |
+
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
|
42 |
+
|
43 |
+
|
44 |
+
def apply_order(p, x, xs):
|
45 |
+
token_order = []
|
46 |
+
|
47 |
+
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
|
48 |
+
for token in x:
|
49 |
+
token_order.append((p.prompt.find(token), token))
|
50 |
+
|
51 |
+
token_order.sort(key=lambda t: t[0])
|
52 |
+
|
53 |
+
prompt_parts = []
|
54 |
+
|
55 |
+
# Split the prompt up, taking out the tokens
|
56 |
+
for _, token in token_order:
|
57 |
+
n = p.prompt.find(token)
|
58 |
+
prompt_parts.append(p.prompt[0:n])
|
59 |
+
p.prompt = p.prompt[n + len(token):]
|
60 |
+
|
61 |
+
# Rebuild the prompt with the tokens in the order we want
|
62 |
+
prompt_tmp = ""
|
63 |
+
for idx, part in enumerate(prompt_parts):
|
64 |
+
prompt_tmp += part
|
65 |
+
prompt_tmp += x[idx]
|
66 |
+
p.prompt = prompt_tmp + p.prompt
|
67 |
+
|
68 |
+
|
69 |
+
def apply_sampler(p, x, xs):
|
70 |
+
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
|
71 |
+
if sampler_name is None:
|
72 |
+
raise RuntimeError(f"Unknown sampler: {x}")
|
73 |
+
|
74 |
+
p.sampler_name = sampler_name
|
75 |
+
|
76 |
+
|
77 |
+
def confirm_samplers(p, xs):
|
78 |
+
for x in xs:
|
79 |
+
if x.lower() not in sd_samplers.samplers_map:
|
80 |
+
raise RuntimeError(f"Unknown sampler: {x}")
|
81 |
+
|
82 |
+
|
83 |
+
def apply_checkpoint(p, x, xs):
|
84 |
+
info = modules.sd_models.get_closet_checkpoint_match(x)
|
85 |
+
if info is None:
|
86 |
+
raise RuntimeError(f"Unknown checkpoint: {x}")
|
87 |
+
p.override_settings['sd_model_checkpoint'] = info.name
|
88 |
+
|
89 |
+
|
90 |
+
def confirm_checkpoints(p, xs):
|
91 |
+
for x in xs:
|
92 |
+
if modules.sd_models.get_closet_checkpoint_match(x) is None:
|
93 |
+
raise RuntimeError(f"Unknown checkpoint: {x}")
|
94 |
+
|
95 |
+
|
96 |
+
def apply_clip_skip(p, x, xs):
|
97 |
+
opts.data["CLIP_stop_at_last_layers"] = x
|
98 |
+
|
99 |
+
|
100 |
+
def apply_upscale_latent_space(p, x, xs):
|
101 |
+
if x.lower().strip() != '0':
|
102 |
+
opts.data["use_scale_latent_for_hires_fix"] = True
|
103 |
+
else:
|
104 |
+
opts.data["use_scale_latent_for_hires_fix"] = False
|
105 |
+
|
106 |
+
|
107 |
+
def find_vae(name: str):
|
108 |
+
if name.lower() in ['auto', 'automatic']:
|
109 |
+
return modules.sd_vae.unspecified
|
110 |
+
if name.lower() == 'none':
|
111 |
+
return None
|
112 |
+
else:
|
113 |
+
choices = [x for x in sorted(modules.sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()]
|
114 |
+
if len(choices) == 0:
|
115 |
+
print(f"No VAE found for {name}; using automatic")
|
116 |
+
return modules.sd_vae.unspecified
|
117 |
+
else:
|
118 |
+
return modules.sd_vae.vae_dict[choices[0]]
|
119 |
+
|
120 |
+
|
121 |
+
def apply_vae(p, x, xs):
|
122 |
+
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x))
|
123 |
+
|
124 |
+
|
125 |
+
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
|
126 |
+
p.styles.extend(x.split(','))
|
127 |
+
|
128 |
+
|
129 |
+
def apply_uni_pc_order(p, x, xs):
|
130 |
+
opts.data["uni_pc_order"] = min(x, p.steps - 1)
|
131 |
+
|
132 |
+
|
133 |
+
def apply_face_restore(p, opt, x):
|
134 |
+
opt = opt.lower()
|
135 |
+
if opt == 'codeformer':
|
136 |
+
is_active = True
|
137 |
+
p.face_restoration_model = 'CodeFormer'
|
138 |
+
elif opt == 'gfpgan':
|
139 |
+
is_active = True
|
140 |
+
p.face_restoration_model = 'GFPGAN'
|
141 |
+
else:
|
142 |
+
is_active = opt in ('true', 'yes', 'y', '1')
|
143 |
+
|
144 |
+
p.restore_faces = is_active
|
145 |
+
|
146 |
+
|
147 |
+
def apply_override(field, boolean: bool = False):
|
148 |
+
def fun(p, x, xs):
|
149 |
+
if boolean:
|
150 |
+
x = True if x.lower() == "true" else False
|
151 |
+
p.override_settings[field] = x
|
152 |
+
return fun
|
153 |
+
|
154 |
+
|
155 |
+
def boolean_choice(reverse: bool = False):
|
156 |
+
def choice():
|
157 |
+
return ["False", "True"] if reverse else ["True", "False"]
|
158 |
+
return choice
|
159 |
+
|
160 |
+
|
161 |
+
def format_value_add_label(p, opt, x):
|
162 |
+
if type(x) == float:
|
163 |
+
x = round(x, 8)
|
164 |
+
|
165 |
+
return f"{opt.label}: {x}"
|
166 |
+
|
167 |
+
|
168 |
+
def format_value(p, opt, x):
|
169 |
+
if type(x) == float:
|
170 |
+
x = round(x, 8)
|
171 |
+
return x
|
172 |
+
|
173 |
+
|
174 |
+
def format_value_join_list(p, opt, x):
|
175 |
+
return ", ".join(x)
|
176 |
+
|
177 |
+
|
178 |
+
def do_nothing(p, x, xs):
|
179 |
+
pass
|
180 |
+
|
181 |
+
|
182 |
+
def format_nothing(p, opt, x):
|
183 |
+
return ""
|
184 |
+
|
185 |
+
|
186 |
+
def str_permutations(x):
|
187 |
+
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
|
188 |
+
return x
|
189 |
+
|
190 |
+
|
191 |
+
class AxisOption:
|
192 |
+
def __init__(self, label, type, apply, format_value=format_value_add_label, confirm=None, cost=0.0, choices=None):
|
193 |
+
self.label = label
|
194 |
+
self.type = type
|
195 |
+
self.apply = apply
|
196 |
+
self.format_value = format_value
|
197 |
+
self.confirm = confirm
|
198 |
+
self.cost = cost
|
199 |
+
self.choices = choices
|
200 |
+
|
201 |
+
|
202 |
+
class AxisOptionImg2Img(AxisOption):
|
203 |
+
def __init__(self, *args, **kwargs):
|
204 |
+
super().__init__(*args, **kwargs)
|
205 |
+
self.is_img2img = True
|
206 |
+
|
207 |
+
class AxisOptionTxt2Img(AxisOption):
|
208 |
+
def __init__(self, *args, **kwargs):
|
209 |
+
super().__init__(*args, **kwargs)
|
210 |
+
self.is_img2img = False
|
211 |
+
|
212 |
+
|
213 |
+
axis_options = [
|
214 |
+
AxisOption("Nothing", str, do_nothing, format_value=format_nothing),
|
215 |
+
AxisOption("Seed", int, apply_field("seed")),
|
216 |
+
AxisOption("Var. seed", int, apply_field("subseed")),
|
217 |
+
AxisOption("Var. strength", float, apply_field("subseed_strength")),
|
218 |
+
AxisOption("Steps", int, apply_field("steps")),
|
219 |
+
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
|
220 |
+
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
|
221 |
+
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
|
222 |
+
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
|
223 |
+
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
|
224 |
+
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
|
225 |
+
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
|
226 |
+
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
|
227 |
+
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
|
228 |
+
AxisOption("Sigma Churn", float, apply_field("s_churn")),
|
229 |
+
AxisOption("Sigma min", float, apply_field("s_tmin")),
|
230 |
+
AxisOption("Sigma max", float, apply_field("s_tmax")),
|
231 |
+
AxisOption("Sigma noise", float, apply_field("s_noise")),
|
232 |
+
AxisOption("Schedule type", str, apply_override("k_sched_type"), choices=lambda: list(sd_samplers_kdiffusion.k_diffusion_scheduler)),
|
233 |
+
AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
|
234 |
+
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
|
235 |
+
AxisOption("Schedule rho", float, apply_override("rho")),
|
236 |
+
AxisOption("Eta", float, apply_field("eta")),
|
237 |
+
AxisOption("Clip skip", int, apply_clip_skip),
|
238 |
+
AxisOption("Denoising", float, apply_field("denoising_strength")),
|
239 |
+
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
|
240 |
+
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
|
241 |
+
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['None'] + list(sd_vae.vae_dict)),
|
242 |
+
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
|
243 |
+
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
|
244 |
+
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
|
245 |
+
AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')),
|
246 |
+
AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')),
|
247 |
+
AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)),
|
248 |
+
]
|
249 |
+
|
250 |
+
|
251 |
+
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
|
252 |
+
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
253 |
+
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
254 |
+
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
|
255 |
+
|
256 |
+
list_size = (len(xs) * len(ys) * len(zs))
|
257 |
+
|
258 |
+
processed_result = None
|
259 |
+
|
260 |
+
state.job_count = list_size * p.n_iter
|
261 |
+
|
262 |
+
def process_cell(x, y, z, ix, iy, iz):
|
263 |
+
nonlocal processed_result
|
264 |
+
|
265 |
+
def index(ix, iy, iz):
|
266 |
+
return ix + iy * len(xs) + iz * len(xs) * len(ys)
|
267 |
+
|
268 |
+
state.job = f"{index(ix, iy, iz) + 1} out of {list_size}"
|
269 |
+
|
270 |
+
processed: Processed = cell(x, y, z, ix, iy, iz)
|
271 |
+
|
272 |
+
if processed_result is None:
|
273 |
+
# Use our first processed result object as a template container to hold our full results
|
274 |
+
processed_result = copy(processed)
|
275 |
+
processed_result.images = [None] * list_size
|
276 |
+
processed_result.all_prompts = [None] * list_size
|
277 |
+
processed_result.all_seeds = [None] * list_size
|
278 |
+
processed_result.infotexts = [None] * list_size
|
279 |
+
processed_result.index_of_first_image = 1
|
280 |
+
|
281 |
+
idx = index(ix, iy, iz)
|
282 |
+
if processed.images:
|
283 |
+
# Non-empty list indicates some degree of success.
|
284 |
+
processed_result.images[idx] = processed.images[0]
|
285 |
+
processed_result.all_prompts[idx] = processed.prompt
|
286 |
+
processed_result.all_seeds[idx] = processed.seed
|
287 |
+
processed_result.infotexts[idx] = processed.infotexts[0]
|
288 |
+
else:
|
289 |
+
cell_mode = "P"
|
290 |
+
cell_size = (processed_result.width, processed_result.height)
|
291 |
+
if processed_result.images[0] is not None:
|
292 |
+
cell_mode = processed_result.images[0].mode
|
293 |
+
#This corrects size in case of batches:
|
294 |
+
cell_size = processed_result.images[0].size
|
295 |
+
processed_result.images[idx] = Image.new(cell_mode, cell_size)
|
296 |
+
|
297 |
+
|
298 |
+
if first_axes_processed == 'x':
|
299 |
+
for ix, x in enumerate(xs):
|
300 |
+
if second_axes_processed == 'y':
|
301 |
+
for iy, y in enumerate(ys):
|
302 |
+
for iz, z in enumerate(zs):
|
303 |
+
process_cell(x, y, z, ix, iy, iz)
|
304 |
+
else:
|
305 |
+
for iz, z in enumerate(zs):
|
306 |
+
for iy, y in enumerate(ys):
|
307 |
+
process_cell(x, y, z, ix, iy, iz)
|
308 |
+
elif first_axes_processed == 'y':
|
309 |
+
for iy, y in enumerate(ys):
|
310 |
+
if second_axes_processed == 'x':
|
311 |
+
for ix, x in enumerate(xs):
|
312 |
+
for iz, z in enumerate(zs):
|
313 |
+
process_cell(x, y, z, ix, iy, iz)
|
314 |
+
else:
|
315 |
+
for iz, z in enumerate(zs):
|
316 |
+
for ix, x in enumerate(xs):
|
317 |
+
process_cell(x, y, z, ix, iy, iz)
|
318 |
+
elif first_axes_processed == 'z':
|
319 |
+
for iz, z in enumerate(zs):
|
320 |
+
if second_axes_processed == 'x':
|
321 |
+
for ix, x in enumerate(xs):
|
322 |
+
for iy, y in enumerate(ys):
|
323 |
+
process_cell(x, y, z, ix, iy, iz)
|
324 |
+
else:
|
325 |
+
for iy, y in enumerate(ys):
|
326 |
+
for ix, x in enumerate(xs):
|
327 |
+
process_cell(x, y, z, ix, iy, iz)
|
328 |
+
|
329 |
+
if not processed_result:
|
330 |
+
# Should never happen, I've only seen it on one of four open tabs and it needed to refresh.
|
331 |
+
print("Unexpected error: Processing could not begin, you may need to refresh the tab or restart the service.")
|
332 |
+
return Processed(p, [])
|
333 |
+
elif not any(processed_result.images):
|
334 |
+
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
|
335 |
+
return Processed(p, [])
|
336 |
+
|
337 |
+
z_count = len(zs)
|
338 |
+
|
339 |
+
for i in range(z_count):
|
340 |
+
start_index = (i * len(xs) * len(ys)) + i
|
341 |
+
end_index = start_index + len(xs) * len(ys)
|
342 |
+
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
|
343 |
+
if draw_legend:
|
344 |
+
grid = images.draw_grid_annotations(grid, processed_result.images[start_index].size[0], processed_result.images[start_index].size[1], hor_texts, ver_texts, margin_size)
|
345 |
+
processed_result.images.insert(i, grid)
|
346 |
+
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
|
347 |
+
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
|
348 |
+
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
|
349 |
+
|
350 |
+
sub_grid_size = processed_result.images[0].size
|
351 |
+
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
|
352 |
+
if draw_legend:
|
353 |
+
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]])
|
354 |
+
processed_result.images.insert(0, z_grid)
|
355 |
+
#TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
|
356 |
+
#processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
|
357 |
+
#processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
|
358 |
+
processed_result.infotexts.insert(0, processed_result.infotexts[0])
|
359 |
+
|
360 |
+
return processed_result
|
361 |
+
|
362 |
+
|
363 |
+
class SharedSettingsStackHelper(object):
|
364 |
+
def __enter__(self):
|
365 |
+
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
366 |
+
self.vae = opts.sd_vae
|
367 |
+
self.uni_pc_order = opts.uni_pc_order
|
368 |
+
|
369 |
+
def __exit__(self, exc_type, exc_value, tb):
|
370 |
+
opts.data["sd_vae"] = self.vae
|
371 |
+
opts.data["uni_pc_order"] = self.uni_pc_order
|
372 |
+
modules.sd_models.reload_model_weights()
|
373 |
+
modules.sd_vae.reload_vae_weights()
|
374 |
+
|
375 |
+
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
|
376 |
+
|
377 |
+
|
378 |
+
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
379 |
+
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
|
380 |
+
|
381 |
+
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
|
382 |
+
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
|
383 |
+
|
384 |
+
|
385 |
+
class Script(scripts.Script):
|
386 |
+
def title(self):
|
387 |
+
return "X/Y/Z plot"
|
388 |
+
|
389 |
+
def ui(self, is_img2img):
|
390 |
+
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
|
391 |
+
|
392 |
+
with gr.Row():
|
393 |
+
with gr.Column(scale=19):
|
394 |
+
with gr.Row():
|
395 |
+
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
|
396 |
+
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
|
397 |
+
x_values_dropdown = gr.Dropdown(label="X values",visible=False,multiselect=True,interactive=True)
|
398 |
+
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
|
399 |
+
|
400 |
+
with gr.Row():
|
401 |
+
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
|
402 |
+
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
|
403 |
+
y_values_dropdown = gr.Dropdown(label="Y values",visible=False,multiselect=True,interactive=True)
|
404 |
+
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
|
405 |
+
|
406 |
+
with gr.Row():
|
407 |
+
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
|
408 |
+
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
|
409 |
+
z_values_dropdown = gr.Dropdown(label="Z values",visible=False,multiselect=True,interactive=True)
|
410 |
+
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
|
411 |
+
|
412 |
+
with gr.Row(variant="compact", elem_id="axis_options"):
|
413 |
+
with gr.Column():
|
414 |
+
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
|
415 |
+
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
|
416 |
+
with gr.Column():
|
417 |
+
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
|
418 |
+
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
|
419 |
+
with gr.Column():
|
420 |
+
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
|
421 |
+
|
422 |
+
with gr.Row(variant="compact", elem_id="swap_axes"):
|
423 |
+
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
|
424 |
+
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
|
425 |
+
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
|
426 |
+
|
427 |
+
def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
|
428 |
+
return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
|
429 |
+
|
430 |
+
xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
|
431 |
+
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
|
432 |
+
yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
|
433 |
+
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
|
434 |
+
xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
|
435 |
+
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
|
436 |
+
|
437 |
+
def fill(x_type):
|
438 |
+
axis = self.current_axis_options[x_type]
|
439 |
+
return axis.choices() if axis.choices else gr.update()
|
440 |
+
|
441 |
+
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values_dropdown])
|
442 |
+
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values_dropdown])
|
443 |
+
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values_dropdown])
|
444 |
+
|
445 |
+
def select_axis(axis_type,axis_values_dropdown):
|
446 |
+
choices = self.current_axis_options[axis_type].choices
|
447 |
+
has_choices = choices is not None
|
448 |
+
current_values = axis_values_dropdown
|
449 |
+
if has_choices:
|
450 |
+
choices = choices()
|
451 |
+
if isinstance(current_values,str):
|
452 |
+
current_values = current_values.split(",")
|
453 |
+
current_values = list(filter(lambda x: x in choices, current_values))
|
454 |
+
return gr.Button.update(visible=has_choices),gr.Textbox.update(visible=not has_choices),gr.update(choices=choices if has_choices else None,visible=has_choices,value=current_values)
|
455 |
+
|
456 |
+
x_type.change(fn=select_axis, inputs=[x_type,x_values_dropdown], outputs=[fill_x_button,x_values,x_values_dropdown])
|
457 |
+
y_type.change(fn=select_axis, inputs=[y_type,y_values_dropdown], outputs=[fill_y_button,y_values,y_values_dropdown])
|
458 |
+
z_type.change(fn=select_axis, inputs=[z_type,z_values_dropdown], outputs=[fill_z_button,z_values,z_values_dropdown])
|
459 |
+
|
460 |
+
def get_dropdown_update_from_params(axis,params):
|
461 |
+
val_key = f"{axis} Values"
|
462 |
+
vals = params.get(val_key,"")
|
463 |
+
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
|
464 |
+
return gr.update(value = valslist)
|
465 |
+
|
466 |
+
self.infotext_fields = (
|
467 |
+
(x_type, "X Type"),
|
468 |
+
(x_values, "X Values"),
|
469 |
+
(x_values_dropdown, lambda params:get_dropdown_update_from_params("X",params)),
|
470 |
+
(y_type, "Y Type"),
|
471 |
+
(y_values, "Y Values"),
|
472 |
+
(y_values_dropdown, lambda params:get_dropdown_update_from_params("Y",params)),
|
473 |
+
(z_type, "Z Type"),
|
474 |
+
(z_values, "Z Values"),
|
475 |
+
(z_values_dropdown, lambda params:get_dropdown_update_from_params("Z",params)),
|
476 |
+
)
|
477 |
+
|
478 |
+
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size]
|
479 |
+
|
480 |
+
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
|
481 |
+
if not no_fixed_seeds:
|
482 |
+
modules.processing.fix_seed(p)
|
483 |
+
|
484 |
+
if not opts.return_grid:
|
485 |
+
p.batch_size = 1
|
486 |
+
|
487 |
+
def process_axis(opt, vals, vals_dropdown):
|
488 |
+
if opt.label == 'Nothing':
|
489 |
+
return [0]
|
490 |
+
|
491 |
+
if opt.choices is not None:
|
492 |
+
valslist = vals_dropdown
|
493 |
+
else:
|
494 |
+
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
|
495 |
+
|
496 |
+
if opt.type == int:
|
497 |
+
valslist_ext = []
|
498 |
+
|
499 |
+
for val in valslist:
|
500 |
+
m = re_range.fullmatch(val)
|
501 |
+
mc = re_range_count.fullmatch(val)
|
502 |
+
if m is not None:
|
503 |
+
start = int(m.group(1))
|
504 |
+
end = int(m.group(2))+1
|
505 |
+
step = int(m.group(3)) if m.group(3) is not None else 1
|
506 |
+
|
507 |
+
valslist_ext += list(range(start, end, step))
|
508 |
+
elif mc is not None:
|
509 |
+
start = int(mc.group(1))
|
510 |
+
end = int(mc.group(2))
|
511 |
+
num = int(mc.group(3)) if mc.group(3) is not None else 1
|
512 |
+
|
513 |
+
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
|
514 |
+
else:
|
515 |
+
valslist_ext.append(val)
|
516 |
+
|
517 |
+
valslist = valslist_ext
|
518 |
+
elif opt.type == float:
|
519 |
+
valslist_ext = []
|
520 |
+
|
521 |
+
for val in valslist:
|
522 |
+
m = re_range_float.fullmatch(val)
|
523 |
+
mc = re_range_count_float.fullmatch(val)
|
524 |
+
if m is not None:
|
525 |
+
start = float(m.group(1))
|
526 |
+
end = float(m.group(2))
|
527 |
+
step = float(m.group(3)) if m.group(3) is not None else 1
|
528 |
+
|
529 |
+
valslist_ext += np.arange(start, end + step, step).tolist()
|
530 |
+
elif mc is not None:
|
531 |
+
start = float(mc.group(1))
|
532 |
+
end = float(mc.group(2))
|
533 |
+
num = int(mc.group(3)) if mc.group(3) is not None else 1
|
534 |
+
|
535 |
+
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
|
536 |
+
else:
|
537 |
+
valslist_ext.append(val)
|
538 |
+
|
539 |
+
valslist = valslist_ext
|
540 |
+
elif opt.type == str_permutations:
|
541 |
+
valslist = list(permutations(valslist))
|
542 |
+
|
543 |
+
valslist = [opt.type(x) for x in valslist]
|
544 |
+
|
545 |
+
# Confirm options are valid before starting
|
546 |
+
if opt.confirm:
|
547 |
+
opt.confirm(p, valslist)
|
548 |
+
|
549 |
+
return valslist
|
550 |
+
|
551 |
+
x_opt = self.current_axis_options[x_type]
|
552 |
+
if x_opt.choices is not None:
|
553 |
+
x_values = ",".join(x_values_dropdown)
|
554 |
+
xs = process_axis(x_opt, x_values, x_values_dropdown)
|
555 |
+
|
556 |
+
y_opt = self.current_axis_options[y_type]
|
557 |
+
if y_opt.choices is not None:
|
558 |
+
y_values = ",".join(y_values_dropdown)
|
559 |
+
ys = process_axis(y_opt, y_values, y_values_dropdown)
|
560 |
+
|
561 |
+
z_opt = self.current_axis_options[z_type]
|
562 |
+
if z_opt.choices is not None:
|
563 |
+
z_values = ",".join(z_values_dropdown)
|
564 |
+
zs = process_axis(z_opt, z_values, z_values_dropdown)
|
565 |
+
|
566 |
+
# this could be moved to common code, but unlikely to be ever triggered anywhere else
|
567 |
+
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
|
568 |
+
grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
|
569 |
+
assert grid_mp < opts.img_max_size_mp, f'Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)'
|
570 |
+
|
571 |
+
def fix_axis_seeds(axis_opt, axis_list):
|
572 |
+
if axis_opt.label in ['Seed', 'Var. seed']:
|
573 |
+
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
|
574 |
+
else:
|
575 |
+
return axis_list
|
576 |
+
|
577 |
+
if not no_fixed_seeds:
|
578 |
+
xs = fix_axis_seeds(x_opt, xs)
|
579 |
+
ys = fix_axis_seeds(y_opt, ys)
|
580 |
+
zs = fix_axis_seeds(z_opt, zs)
|
581 |
+
|
582 |
+
if x_opt.label == 'Steps':
|
583 |
+
total_steps = sum(xs) * len(ys) * len(zs)
|
584 |
+
elif y_opt.label == 'Steps':
|
585 |
+
total_steps = sum(ys) * len(xs) * len(zs)
|
586 |
+
elif z_opt.label == 'Steps':
|
587 |
+
total_steps = sum(zs) * len(xs) * len(ys)
|
588 |
+
else:
|
589 |
+
total_steps = p.steps * len(xs) * len(ys) * len(zs)
|
590 |
+
|
591 |
+
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
|
592 |
+
if x_opt.label == "Hires steps":
|
593 |
+
total_steps += sum(xs) * len(ys) * len(zs)
|
594 |
+
elif y_opt.label == "Hires steps":
|
595 |
+
total_steps += sum(ys) * len(xs) * len(zs)
|
596 |
+
elif z_opt.label == "Hires steps":
|
597 |
+
total_steps += sum(zs) * len(xs) * len(ys)
|
598 |
+
elif p.hr_second_pass_steps:
|
599 |
+
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs)
|
600 |
+
else:
|
601 |
+
total_steps *= 2
|
602 |
+
|
603 |
+
total_steps *= p.n_iter
|
604 |
+
|
605 |
+
image_cell_count = p.n_iter * p.batch_size
|
606 |
+
cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else ""
|
607 |
+
plural_s = 's' if len(zs) > 1 else ''
|
608 |
+
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
|
609 |
+
shared.total_tqdm.updateTotal(total_steps)
|
610 |
+
|
611 |
+
state.xyz_plot_x = AxisInfo(x_opt, xs)
|
612 |
+
state.xyz_plot_y = AxisInfo(y_opt, ys)
|
613 |
+
state.xyz_plot_z = AxisInfo(z_opt, zs)
|
614 |
+
|
615 |
+
# If one of the axes is very slow to change between (like SD model
|
616 |
+
# checkpoint), then make sure it is in the outer iteration of the nested
|
617 |
+
# `for` loop.
|
618 |
+
first_axes_processed = 'z'
|
619 |
+
second_axes_processed = 'y'
|
620 |
+
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
|
621 |
+
first_axes_processed = 'x'
|
622 |
+
if y_opt.cost > z_opt.cost:
|
623 |
+
second_axes_processed = 'y'
|
624 |
+
else:
|
625 |
+
second_axes_processed = 'z'
|
626 |
+
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
|
627 |
+
first_axes_processed = 'y'
|
628 |
+
if x_opt.cost > z_opt.cost:
|
629 |
+
second_axes_processed = 'x'
|
630 |
+
else:
|
631 |
+
second_axes_processed = 'z'
|
632 |
+
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
|
633 |
+
first_axes_processed = 'z'
|
634 |
+
if x_opt.cost > y_opt.cost:
|
635 |
+
second_axes_processed = 'x'
|
636 |
+
else:
|
637 |
+
second_axes_processed = 'y'
|
638 |
+
|
639 |
+
grid_infotext = [None] * (1 + len(zs))
|
640 |
+
|
641 |
+
def cell(x, y, z, ix, iy, iz):
|
642 |
+
if shared.state.interrupted:
|
643 |
+
return Processed(p, [], p.seed, "")
|
644 |
+
|
645 |
+
pc = copy(p)
|
646 |
+
pc.styles = pc.styles[:]
|
647 |
+
x_opt.apply(pc, x, xs)
|
648 |
+
y_opt.apply(pc, y, ys)
|
649 |
+
z_opt.apply(pc, z, zs)
|
650 |
+
|
651 |
+
res = process_images(pc)
|
652 |
+
|
653 |
+
# Sets subgrid infotexts
|
654 |
+
subgrid_index = 1 + iz
|
655 |
+
if grid_infotext[subgrid_index] is None and ix == 0 and iy == 0:
|
656 |
+
pc.extra_generation_params = copy(pc.extra_generation_params)
|
657 |
+
pc.extra_generation_params['Script'] = self.title()
|
658 |
+
|
659 |
+
if x_opt.label != 'Nothing':
|
660 |
+
pc.extra_generation_params["X Type"] = x_opt.label
|
661 |
+
pc.extra_generation_params["X Values"] = x_values
|
662 |
+
if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
|
663 |
+
pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
|
664 |
+
|
665 |
+
if y_opt.label != 'Nothing':
|
666 |
+
pc.extra_generation_params["Y Type"] = y_opt.label
|
667 |
+
pc.extra_generation_params["Y Values"] = y_values
|
668 |
+
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
|
669 |
+
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
|
670 |
+
|
671 |
+
grid_infotext[subgrid_index] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
|
672 |
+
|
673 |
+
# Sets main grid infotext
|
674 |
+
if grid_infotext[0] is None and ix == 0 and iy == 0 and iz == 0:
|
675 |
+
pc.extra_generation_params = copy(pc.extra_generation_params)
|
676 |
+
|
677 |
+
if z_opt.label != 'Nothing':
|
678 |
+
pc.extra_generation_params["Z Type"] = z_opt.label
|
679 |
+
pc.extra_generation_params["Z Values"] = z_values
|
680 |
+
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
|
681 |
+
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
|
682 |
+
|
683 |
+
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
|
684 |
+
|
685 |
+
return res
|
686 |
+
|
687 |
+
with SharedSettingsStackHelper():
|
688 |
+
processed = draw_xyz_grid(
|
689 |
+
p,
|
690 |
+
xs=xs,
|
691 |
+
ys=ys,
|
692 |
+
zs=zs,
|
693 |
+
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
|
694 |
+
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
|
695 |
+
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
|
696 |
+
cell=cell,
|
697 |
+
draw_legend=draw_legend,
|
698 |
+
include_lone_images=include_lone_images,
|
699 |
+
include_sub_grids=include_sub_grids,
|
700 |
+
first_axes_processed=first_axes_processed,
|
701 |
+
second_axes_processed=second_axes_processed,
|
702 |
+
margin_size=margin_size
|
703 |
+
)
|
704 |
+
|
705 |
+
if not processed.images:
|
706 |
+
# It broke, no further handling needed.
|
707 |
+
return processed
|
708 |
+
|
709 |
+
z_count = len(zs)
|
710 |
+
|
711 |
+
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
|
712 |
+
processed.infotexts[:1+z_count] = grid_infotext[:1+z_count]
|
713 |
+
|
714 |
+
if not include_lone_images:
|
715 |
+
# Don't need sub-images anymore, drop from list:
|
716 |
+
processed.images = processed.images[:z_count+1]
|
717 |
+
|
718 |
+
if opts.grid_save:
|
719 |
+
# Auto-save main and sub-grids:
|
720 |
+
grid_count = z_count + 1 if z_count > 1 else 1
|
721 |
+
for g in range(grid_count):
|
722 |
+
#TODO: See previous comment about intentional data misalignment.
|
723 |
+
adj_g = g-1 if g > 0 else g
|
724 |
+
images.save_image(processed.images[g], p.outpath_grids, "xyz_grid", info=processed.infotexts[g], extension=opts.grid_format, prompt=processed.all_prompts[adj_g], seed=processed.all_seeds[adj_g], grid=True, p=processed)
|
725 |
+
|
726 |
+
if not include_sub_grids:
|
727 |
+
# Done with sub-grids, drop all related information:
|
728 |
+
for _ in range(z_count):
|
729 |
+
del processed.images[1]
|
730 |
+
del processed.all_prompts[1]
|
731 |
+
del processed.all_seeds[1]
|
732 |
+
del processed.infotexts[1]
|
733 |
+
|
734 |
+
return processed
|
style.css
ADDED
The diff for this file is too large to render.
See raw diff
|
|
test/__init__.py
ADDED
File without changes
|
test/conftest.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
from PIL import Image
|
5 |
+
from gradio.processing_utils import encode_pil_to_base64
|
6 |
+
|
7 |
+
test_files_path = os.path.dirname(__file__) + "/test_files"
|
8 |
+
|
9 |
+
|
10 |
+
@pytest.fixture(scope="session") # session so we don't read this over and over
|
11 |
+
def img2img_basic_image_base64() -> str:
|
12 |
+
return encode_pil_to_base64(Image.open(os.path.join(test_files_path, "img2img_basic.png")))
|
13 |
+
|
14 |
+
|
15 |
+
@pytest.fixture(scope="session") # session so we don't read this over and over
|
16 |
+
def mask_basic_image_base64() -> str:
|
17 |
+
return encode_pil_to_base64(Image.open(os.path.join(test_files_path, "mask_basic.png")))
|
test/test_extras.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
|
3 |
+
|
4 |
+
def test_simple_upscaling_performed(base_url, img2img_basic_image_base64):
|
5 |
+
payload = {
|
6 |
+
"resize_mode": 0,
|
7 |
+
"show_extras_results": True,
|
8 |
+
"gfpgan_visibility": 0,
|
9 |
+
"codeformer_visibility": 0,
|
10 |
+
"codeformer_weight": 0,
|
11 |
+
"upscaling_resize": 2,
|
12 |
+
"upscaling_resize_w": 128,
|
13 |
+
"upscaling_resize_h": 128,
|
14 |
+
"upscaling_crop": True,
|
15 |
+
"upscaler_1": "Lanczos",
|
16 |
+
"upscaler_2": "None",
|
17 |
+
"extras_upscaler_2_visibility": 0,
|
18 |
+
"image": img2img_basic_image_base64,
|
19 |
+
}
|
20 |
+
assert requests.post(f"{base_url}/sdapi/v1/extra-single-image", json=payload).status_code == 200
|
21 |
+
|
22 |
+
|
23 |
+
def test_png_info_performed(base_url, img2img_basic_image_base64):
|
24 |
+
payload = {
|
25 |
+
"image": img2img_basic_image_base64,
|
26 |
+
}
|
27 |
+
assert requests.post(f"{base_url}/sdapi/v1/extra-single-image", json=payload).status_code == 200
|
28 |
+
|
29 |
+
|
30 |
+
def test_interrogate_performed(base_url, img2img_basic_image_base64):
|
31 |
+
payload = {
|
32 |
+
"image": img2img_basic_image_base64,
|
33 |
+
"model": "clip",
|
34 |
+
}
|
35 |
+
assert requests.post(f"{base_url}/sdapi/v1/extra-single-image", json=payload).status_code == 200
|
test/test_files/empty.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
test/test_files/img2img_basic.png
ADDED
test/test_files/mask_basic.png
ADDED
test/test_img2img.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pytest
|
3 |
+
import requests
|
4 |
+
|
5 |
+
|
6 |
+
@pytest.fixture()
|
7 |
+
def url_img2img(base_url):
|
8 |
+
return f"{base_url}/sdapi/v1/img2img"
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.fixture()
|
12 |
+
def simple_img2img_request(img2img_basic_image_base64):
|
13 |
+
return {
|
14 |
+
"batch_size": 1,
|
15 |
+
"cfg_scale": 7,
|
16 |
+
"denoising_strength": 0.75,
|
17 |
+
"eta": 0,
|
18 |
+
"height": 64,
|
19 |
+
"include_init_images": False,
|
20 |
+
"init_images": [img2img_basic_image_base64],
|
21 |
+
"inpaint_full_res": False,
|
22 |
+
"inpaint_full_res_padding": 0,
|
23 |
+
"inpainting_fill": 0,
|
24 |
+
"inpainting_mask_invert": False,
|
25 |
+
"mask": None,
|
26 |
+
"mask_blur": 4,
|
27 |
+
"n_iter": 1,
|
28 |
+
"negative_prompt": "",
|
29 |
+
"override_settings": {},
|
30 |
+
"prompt": "example prompt",
|
31 |
+
"resize_mode": 0,
|
32 |
+
"restore_faces": False,
|
33 |
+
"s_churn": 0,
|
34 |
+
"s_noise": 1,
|
35 |
+
"s_tmax": 0,
|
36 |
+
"s_tmin": 0,
|
37 |
+
"sampler_index": "Euler a",
|
38 |
+
"seed": -1,
|
39 |
+
"seed_resize_from_h": -1,
|
40 |
+
"seed_resize_from_w": -1,
|
41 |
+
"steps": 3,
|
42 |
+
"styles": [],
|
43 |
+
"subseed": -1,
|
44 |
+
"subseed_strength": 0,
|
45 |
+
"tiling": False,
|
46 |
+
"width": 64,
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
def test_img2img_simple_performed(url_img2img, simple_img2img_request):
|
51 |
+
assert requests.post(url_img2img, json=simple_img2img_request).status_code == 200
|
52 |
+
|
53 |
+
|
54 |
+
def test_inpainting_masked_performed(url_img2img, simple_img2img_request, mask_basic_image_base64):
|
55 |
+
simple_img2img_request["mask"] = mask_basic_image_base64
|
56 |
+
assert requests.post(url_img2img, json=simple_img2img_request).status_code == 200
|
57 |
+
|
58 |
+
|
59 |
+
def test_inpainting_with_inverted_masked_performed(url_img2img, simple_img2img_request, mask_basic_image_base64):
|
60 |
+
simple_img2img_request["mask"] = mask_basic_image_base64
|
61 |
+
simple_img2img_request["inpainting_mask_invert"] = True
|
62 |
+
assert requests.post(url_img2img, json=simple_img2img_request).status_code == 200
|
63 |
+
|
64 |
+
|
65 |
+
def test_img2img_sd_upscale_performed(url_img2img, simple_img2img_request):
|
66 |
+
simple_img2img_request["script_name"] = "sd upscale"
|
67 |
+
simple_img2img_request["script_args"] = ["", 8, "Lanczos", 2.0]
|
68 |
+
assert requests.post(url_img2img, json=simple_img2img_request).status_code == 200
|
test/test_txt2img.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pytest
|
3 |
+
import requests
|
4 |
+
|
5 |
+
|
6 |
+
@pytest.fixture()
|
7 |
+
def url_txt2img(base_url):
|
8 |
+
return f"{base_url}/sdapi/v1/txt2img"
|
9 |
+
|
10 |
+
|
11 |
+
@pytest.fixture()
|
12 |
+
def simple_txt2img_request():
|
13 |
+
return {
|
14 |
+
"batch_size": 1,
|
15 |
+
"cfg_scale": 7,
|
16 |
+
"denoising_strength": 0,
|
17 |
+
"enable_hr": False,
|
18 |
+
"eta": 0,
|
19 |
+
"firstphase_height": 0,
|
20 |
+
"firstphase_width": 0,
|
21 |
+
"height": 64,
|
22 |
+
"n_iter": 1,
|
23 |
+
"negative_prompt": "",
|
24 |
+
"prompt": "example prompt",
|
25 |
+
"restore_faces": False,
|
26 |
+
"s_churn": 0,
|
27 |
+
"s_noise": 1,
|
28 |
+
"s_tmax": 0,
|
29 |
+
"s_tmin": 0,
|
30 |
+
"sampler_index": "Euler a",
|
31 |
+
"seed": -1,
|
32 |
+
"seed_resize_from_h": -1,
|
33 |
+
"seed_resize_from_w": -1,
|
34 |
+
"steps": 3,
|
35 |
+
"styles": [],
|
36 |
+
"subseed": -1,
|
37 |
+
"subseed_strength": 0,
|
38 |
+
"tiling": False,
|
39 |
+
"width": 64,
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def test_txt2img_simple_performed(url_txt2img, simple_txt2img_request):
|
44 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
45 |
+
|
46 |
+
|
47 |
+
def test_txt2img_with_negative_prompt_performed(url_txt2img, simple_txt2img_request):
|
48 |
+
simple_txt2img_request["negative_prompt"] = "example negative prompt"
|
49 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
50 |
+
|
51 |
+
|
52 |
+
def test_txt2img_with_complex_prompt_performed(url_txt2img, simple_txt2img_request):
|
53 |
+
simple_txt2img_request["prompt"] = "((emphasis)), (emphasis1:1.1), [to:1], [from::2], [from:to:0.3], [alt|alt1]"
|
54 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
55 |
+
|
56 |
+
|
57 |
+
def test_txt2img_not_square_image_performed(url_txt2img, simple_txt2img_request):
|
58 |
+
simple_txt2img_request["height"] = 128
|
59 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
60 |
+
|
61 |
+
|
62 |
+
def test_txt2img_with_hrfix_performed(url_txt2img, simple_txt2img_request):
|
63 |
+
simple_txt2img_request["enable_hr"] = True
|
64 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
65 |
+
|
66 |
+
|
67 |
+
def test_txt2img_with_tiling_performed(url_txt2img, simple_txt2img_request):
|
68 |
+
simple_txt2img_request["tiling"] = True
|
69 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
70 |
+
|
71 |
+
|
72 |
+
def test_txt2img_with_restore_faces_performed(url_txt2img, simple_txt2img_request):
|
73 |
+
simple_txt2img_request["restore_faces"] = True
|
74 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
75 |
+
|
76 |
+
|
77 |
+
@pytest.mark.parametrize("sampler", ["PLMS", "DDIM", "UniPC"])
|
78 |
+
def test_txt2img_with_vanilla_sampler_performed(url_txt2img, simple_txt2img_request, sampler):
|
79 |
+
simple_txt2img_request["sampler_index"] = sampler
|
80 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
81 |
+
|
82 |
+
|
83 |
+
def test_txt2img_multiple_batches_performed(url_txt2img, simple_txt2img_request):
|
84 |
+
simple_txt2img_request["n_iter"] = 2
|
85 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
86 |
+
|
87 |
+
|
88 |
+
def test_txt2img_batch_performed(url_txt2img, simple_txt2img_request):
|
89 |
+
simple_txt2img_request["batch_size"] = 2
|
90 |
+
assert requests.post(url_txt2img, json=simple_txt2img_request).status_code == 200
|
test/test_utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import requests
|
3 |
+
|
4 |
+
|
5 |
+
def test_options_write(base_url):
|
6 |
+
url_options = f"{base_url}/sdapi/v1/options"
|
7 |
+
response = requests.get(url_options)
|
8 |
+
assert response.status_code == 200
|
9 |
+
|
10 |
+
pre_value = response.json()["send_seed"]
|
11 |
+
|
12 |
+
assert requests.post(url_options, json={'send_seed': (not pre_value)}).status_code == 200
|
13 |
+
|
14 |
+
response = requests.get(url_options)
|
15 |
+
assert response.status_code == 200
|
16 |
+
assert response.json()['send_seed'] == (not pre_value)
|
17 |
+
|
18 |
+
requests.post(url_options, json={"send_seed": pre_value})
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.mark.parametrize("url", [
|
22 |
+
"sdapi/v1/cmd-flags",
|
23 |
+
"sdapi/v1/samplers",
|
24 |
+
"sdapi/v1/upscalers",
|
25 |
+
"sdapi/v1/sd-models",
|
26 |
+
"sdapi/v1/hypernetworks",
|
27 |
+
"sdapi/v1/face-restorers",
|
28 |
+
"sdapi/v1/realesrgan-models",
|
29 |
+
"sdapi/v1/prompt-styles",
|
30 |
+
"sdapi/v1/embeddings",
|
31 |
+
])
|
32 |
+
def test_get_api_url(base_url, url):
|
33 |
+
assert requests.get(f"{base_url}/{url}").status_code == 200
|
textual_inversion_templates/hypernetwork.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a photo of a [filewords]
|
2 |
+
a rendering of a [filewords]
|
3 |
+
a cropped photo of the [filewords]
|
4 |
+
the photo of a [filewords]
|
5 |
+
a photo of a clean [filewords]
|
6 |
+
a photo of a dirty [filewords]
|
7 |
+
a dark photo of the [filewords]
|
8 |
+
a photo of my [filewords]
|
9 |
+
a photo of the cool [filewords]
|
10 |
+
a close-up photo of a [filewords]
|
11 |
+
a bright photo of the [filewords]
|
12 |
+
a cropped photo of a [filewords]
|
13 |
+
a photo of the [filewords]
|
14 |
+
a good photo of the [filewords]
|
15 |
+
a photo of one [filewords]
|
16 |
+
a close-up photo of the [filewords]
|
17 |
+
a rendition of the [filewords]
|
18 |
+
a photo of the clean [filewords]
|
19 |
+
a rendition of a [filewords]
|
20 |
+
a photo of a nice [filewords]
|
21 |
+
a good photo of a [filewords]
|
22 |
+
a photo of the nice [filewords]
|
23 |
+
a photo of the small [filewords]
|
24 |
+
a photo of the weird [filewords]
|
25 |
+
a photo of the large [filewords]
|
26 |
+
a photo of a cool [filewords]
|
27 |
+
a photo of a small [filewords]
|
textual_inversion_templates/none.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
picture
|
textual_inversion_templates/style.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a painting, art by [name]
|
2 |
+
a rendering, art by [name]
|
3 |
+
a cropped painting, art by [name]
|
4 |
+
the painting, art by [name]
|
5 |
+
a clean painting, art by [name]
|
6 |
+
a dirty painting, art by [name]
|
7 |
+
a dark painting, art by [name]
|
8 |
+
a picture, art by [name]
|
9 |
+
a cool painting, art by [name]
|
10 |
+
a close-up painting, art by [name]
|
11 |
+
a bright painting, art by [name]
|
12 |
+
a cropped painting, art by [name]
|
13 |
+
a good painting, art by [name]
|
14 |
+
a close-up painting, art by [name]
|
15 |
+
a rendition, art by [name]
|
16 |
+
a nice painting, art by [name]
|
17 |
+
a small painting, art by [name]
|
18 |
+
a weird painting, art by [name]
|
19 |
+
a large painting, art by [name]
|
textual_inversion_templates/style_filewords.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a painting of [filewords], art by [name]
|
2 |
+
a rendering of [filewords], art by [name]
|
3 |
+
a cropped painting of [filewords], art by [name]
|
4 |
+
the painting of [filewords], art by [name]
|
5 |
+
a clean painting of [filewords], art by [name]
|
6 |
+
a dirty painting of [filewords], art by [name]
|
7 |
+
a dark painting of [filewords], art by [name]
|
8 |
+
a picture of [filewords], art by [name]
|
9 |
+
a cool painting of [filewords], art by [name]
|
10 |
+
a close-up painting of [filewords], art by [name]
|
11 |
+
a bright painting of [filewords], art by [name]
|
12 |
+
a cropped painting of [filewords], art by [name]
|
13 |
+
a good painting of [filewords], art by [name]
|
14 |
+
a close-up painting of [filewords], art by [name]
|
15 |
+
a rendition of [filewords], art by [name]
|
16 |
+
a nice painting of [filewords], art by [name]
|
17 |
+
a small painting of [filewords], art by [name]
|
18 |
+
a weird painting of [filewords], art by [name]
|
19 |
+
a large painting of [filewords], art by [name]
|
textual_inversion_templates/subject.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a photo of a [name]
|
2 |
+
a rendering of a [name]
|
3 |
+
a cropped photo of the [name]
|
4 |
+
the photo of a [name]
|
5 |
+
a photo of a clean [name]
|
6 |
+
a photo of a dirty [name]
|
7 |
+
a dark photo of the [name]
|
8 |
+
a photo of my [name]
|
9 |
+
a photo of the cool [name]
|
10 |
+
a close-up photo of a [name]
|
11 |
+
a bright photo of the [name]
|
12 |
+
a cropped photo of a [name]
|
13 |
+
a photo of the [name]
|
14 |
+
a good photo of the [name]
|
15 |
+
a photo of one [name]
|
16 |
+
a close-up photo of the [name]
|
17 |
+
a rendition of the [name]
|
18 |
+
a photo of the clean [name]
|
19 |
+
a rendition of a [name]
|
20 |
+
a photo of a nice [name]
|
21 |
+
a good photo of a [name]
|
22 |
+
a photo of the nice [name]
|
23 |
+
a photo of the small [name]
|
24 |
+
a photo of the weird [name]
|
25 |
+
a photo of the large [name]
|
26 |
+
a photo of a cool [name]
|
27 |
+
a photo of a small [name]
|
textual_inversion_templates/subject_filewords.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
a photo of a [name], [filewords]
|
2 |
+
a rendering of a [name], [filewords]
|
3 |
+
a cropped photo of the [name], [filewords]
|
4 |
+
the photo of a [name], [filewords]
|
5 |
+
a photo of a clean [name], [filewords]
|
6 |
+
a photo of a dirty [name], [filewords]
|
7 |
+
a dark photo of the [name], [filewords]
|
8 |
+
a photo of my [name], [filewords]
|
9 |
+
a photo of the cool [name], [filewords]
|
10 |
+
a close-up photo of a [name], [filewords]
|
11 |
+
a bright photo of the [name], [filewords]
|
12 |
+
a cropped photo of a [name], [filewords]
|
13 |
+
a photo of the [name], [filewords]
|
14 |
+
a good photo of the [name], [filewords]
|
15 |
+
a photo of one [name], [filewords]
|
16 |
+
a close-up photo of the [name], [filewords]
|
17 |
+
a rendition of the [name], [filewords]
|
18 |
+
a photo of the clean [name], [filewords]
|
19 |
+
a rendition of a [name], [filewords]
|
20 |
+
a photo of a nice [name], [filewords]
|
21 |
+
a good photo of a [name], [filewords]
|
22 |
+
a photo of the nice [name], [filewords]
|
23 |
+
a photo of the small [name], [filewords]
|
24 |
+
a photo of the weird [name], [filewords]
|
25 |
+
a photo of the large [name], [filewords]
|
26 |
+
a photo of a cool [name], [filewords]
|
27 |
+
a photo of a small [name], [filewords]
|
tmp/tagAutocompletePath.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
extensions/a1111-microsoftexcel-tagcomplete/tags
|
ui-config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
webui-macos-env.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
####################################################################
|
3 |
+
# macOS defaults #
|
4 |
+
# Please modify webui-user.sh to change these instead of this file #
|
5 |
+
####################################################################
|
6 |
+
|
7 |
+
if [[ -x "$(command -v python3.10)" ]]
|
8 |
+
then
|
9 |
+
python_cmd="python3.10"
|
10 |
+
fi
|
11 |
+
|
12 |
+
export install_dir="$HOME"
|
13 |
+
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
|
14 |
+
export TORCH_COMMAND="pip install torch==2.0.1 torchvision==0.15.2"
|
15 |
+
export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
|
16 |
+
export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"
|
17 |
+
export PYTORCH_ENABLE_MPS_FALLBACK=1
|
18 |
+
|
19 |
+
####################################################################
|
webui-user.bat
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
set PYTHON=
|
4 |
+
set GIT=
|
5 |
+
set VENV_DIR=
|
6 |
+
set COMMANDLINE_ARGS=
|
7 |
+
|
8 |
+
call webui.bat
|
webui-user.sh
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#########################################################
|
3 |
+
# Uncomment and change the variables below to your need:#
|
4 |
+
#########################################################
|
5 |
+
|
6 |
+
# Install directory without trailing slash
|
7 |
+
#install_dir="/home/$(whoami)"
|
8 |
+
|
9 |
+
# Name of the subdirectory
|
10 |
+
#clone_dir="stable-diffusion-webui"
|
11 |
+
|
12 |
+
# Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention"
|
13 |
+
#export COMMANDLINE_ARGS=""
|
14 |
+
|
15 |
+
# python3 executable
|
16 |
+
#python_cmd="python3"
|
17 |
+
|
18 |
+
# git executable
|
19 |
+
#export GIT="git"
|
20 |
+
|
21 |
+
# python3 venv without trailing slash (defaults to ${install_dir}/${clone_dir}/venv)
|
22 |
+
#venv_dir="venv"
|
23 |
+
|
24 |
+
# script to launch to start the app
|
25 |
+
#export LAUNCH_SCRIPT="launch.py"
|
26 |
+
|
27 |
+
# install command for torch
|
28 |
+
#export TORCH_COMMAND="pip install torch==1.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113"
|
29 |
+
|
30 |
+
# Requirements file to use for stable-diffusion-webui
|
31 |
+
#export REQS_FILE="requirements_versions.txt"
|
32 |
+
|
33 |
+
# Fixed git repos
|
34 |
+
#export K_DIFFUSION_PACKAGE=""
|
35 |
+
#export GFPGAN_PACKAGE=""
|
36 |
+
|
37 |
+
# Fixed git commits
|
38 |
+
#export STABLE_DIFFUSION_COMMIT_HASH=""
|
39 |
+
#export CODEFORMER_COMMIT_HASH=""
|
40 |
+
#export BLIP_COMMIT_HASH=""
|
41 |
+
|
42 |
+
# Uncomment to enable accelerated launch
|
43 |
+
#export ACCELERATE="True"
|
44 |
+
|
45 |
+
# Uncomment to disable TCMalloc
|
46 |
+
#export NO_TCMALLOC="True"
|
47 |
+
|
48 |
+
###########################################
|
webui.bat
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
if not defined PYTHON (set PYTHON=python)
|
4 |
+
if not defined VENV_DIR (set "VENV_DIR=%~dp0%venv")
|
5 |
+
|
6 |
+
set SD_WEBUI_RESTART=tmp/restart
|
7 |
+
set ERROR_REPORTING=FALSE
|
8 |
+
|
9 |
+
mkdir tmp 2>NUL
|
10 |
+
|
11 |
+
%PYTHON% -c "" >tmp/stdout.txt 2>tmp/stderr.txt
|
12 |
+
if %ERRORLEVEL% == 0 goto :check_pip
|
13 |
+
echo Couldn't launch python
|
14 |
+
goto :show_stdout_stderr
|
15 |
+
|
16 |
+
:check_pip
|
17 |
+
%PYTHON% -mpip --help >tmp/stdout.txt 2>tmp/stderr.txt
|
18 |
+
if %ERRORLEVEL% == 0 goto :start_venv
|
19 |
+
if "%PIP_INSTALLER_LOCATION%" == "" goto :show_stdout_stderr
|
20 |
+
%PYTHON% "%PIP_INSTALLER_LOCATION%" >tmp/stdout.txt 2>tmp/stderr.txt
|
21 |
+
if %ERRORLEVEL% == 0 goto :start_venv
|
22 |
+
echo Couldn't install pip
|
23 |
+
goto :show_stdout_stderr
|
24 |
+
|
25 |
+
:start_venv
|
26 |
+
if ["%VENV_DIR%"] == ["-"] goto :skip_venv
|
27 |
+
if ["%SKIP_VENV%"] == ["1"] goto :skip_venv
|
28 |
+
|
29 |
+
dir "%VENV_DIR%\Scripts\Python.exe" >tmp/stdout.txt 2>tmp/stderr.txt
|
30 |
+
if %ERRORLEVEL% == 0 goto :activate_venv
|
31 |
+
|
32 |
+
for /f "delims=" %%i in ('CALL %PYTHON% -c "import sys; print(sys.executable)"') do set PYTHON_FULLNAME="%%i"
|
33 |
+
echo Creating venv in directory %VENV_DIR% using python %PYTHON_FULLNAME%
|
34 |
+
%PYTHON_FULLNAME% -m venv "%VENV_DIR%" >tmp/stdout.txt 2>tmp/stderr.txt
|
35 |
+
if %ERRORLEVEL% == 0 goto :activate_venv
|
36 |
+
echo Unable to create venv in directory "%VENV_DIR%"
|
37 |
+
goto :show_stdout_stderr
|
38 |
+
|
39 |
+
:activate_venv
|
40 |
+
set PYTHON="%VENV_DIR%\Scripts\Python.exe"
|
41 |
+
echo venv %PYTHON%
|
42 |
+
|
43 |
+
:skip_venv
|
44 |
+
if [%ACCELERATE%] == ["True"] goto :accelerate
|
45 |
+
goto :launch
|
46 |
+
|
47 |
+
:accelerate
|
48 |
+
echo Checking for accelerate
|
49 |
+
set ACCELERATE="%VENV_DIR%\Scripts\accelerate.exe"
|
50 |
+
if EXIST %ACCELERATE% goto :accelerate_launch
|
51 |
+
|
52 |
+
:launch
|
53 |
+
%PYTHON% launch.py %*
|
54 |
+
if EXIST tmp/restart goto :skip_venv
|
55 |
+
pause
|
56 |
+
exit /b
|
57 |
+
|
58 |
+
:accelerate_launch
|
59 |
+
echo Accelerating
|
60 |
+
%ACCELERATE% launch --num_cpu_threads_per_process=6 launch.py
|
61 |
+
if EXIST tmp/restart goto :skip_venv
|
62 |
+
pause
|
63 |
+
exit /b
|
64 |
+
|
65 |
+
:show_stdout_stderr
|
66 |
+
|
67 |
+
echo.
|
68 |
+
echo exit code: %errorlevel%
|
69 |
+
|
70 |
+
for /f %%i in ("tmp\stdout.txt") do set size=%%~zi
|
71 |
+
if %size% equ 0 goto :show_stderr
|
72 |
+
echo.
|
73 |
+
echo stdout:
|
74 |
+
type tmp\stdout.txt
|
75 |
+
|
76 |
+
:show_stderr
|
77 |
+
for /f %%i in ("tmp\stderr.txt") do set size=%%~zi
|
78 |
+
if %size% equ 0 goto :show_stderr
|
79 |
+
echo.
|
80 |
+
echo stderr:
|
81 |
+
type tmp\stderr.txt
|
82 |
+
|
83 |
+
:endofscript
|
84 |
+
|
85 |
+
echo.
|
86 |
+
echo Launch unsuccessful. Exiting.
|
87 |
+
pause
|
webui.py
ADDED
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import time
|
6 |
+
import importlib
|
7 |
+
import signal
|
8 |
+
import re
|
9 |
+
import warnings
|
10 |
+
import json
|
11 |
+
from threading import Thread
|
12 |
+
from typing import Iterable
|
13 |
+
|
14 |
+
from fastapi import FastAPI
|
15 |
+
from fastapi.middleware.cors import CORSMiddleware
|
16 |
+
from fastapi.middleware.gzip import GZipMiddleware
|
17 |
+
from packaging import version
|
18 |
+
|
19 |
+
import logging
|
20 |
+
|
21 |
+
# We can't use cmd_opts for this because it will not have been initialized at this point.
|
22 |
+
log_level = os.environ.get("SD_WEBUI_LOG_LEVEL")
|
23 |
+
if log_level:
|
24 |
+
log_level = getattr(logging, log_level.upper(), None) or logging.INFO
|
25 |
+
logging.basicConfig(
|
26 |
+
level=log_level,
|
27 |
+
format='%(asctime)s %(levelname)s [%(name)s] %(message)s',
|
28 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
29 |
+
)
|
30 |
+
|
31 |
+
logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
|
32 |
+
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
33 |
+
|
34 |
+
from modules import timer
|
35 |
+
startup_timer = timer.startup_timer
|
36 |
+
startup_timer.record("launcher")
|
37 |
+
|
38 |
+
import torch
|
39 |
+
import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
|
40 |
+
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
|
41 |
+
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
|
42 |
+
startup_timer.record("import torch")
|
43 |
+
|
44 |
+
import gradio # noqa: F401
|
45 |
+
startup_timer.record("import gradio")
|
46 |
+
|
47 |
+
from modules import paths, timer, import_hook, errors, devices # noqa: F401
|
48 |
+
startup_timer.record("setup paths")
|
49 |
+
|
50 |
+
import ldm.modules.encoders.modules # noqa: F401
|
51 |
+
startup_timer.record("import ldm")
|
52 |
+
|
53 |
+
from modules import extra_networks
|
54 |
+
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, queue_lock # noqa: F401
|
55 |
+
|
56 |
+
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
|
57 |
+
if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
58 |
+
torch.__long_version__ = torch.__version__
|
59 |
+
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
60 |
+
|
61 |
+
from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
|
62 |
+
import modules.codeformer_model as codeformer
|
63 |
+
import modules.face_restoration
|
64 |
+
import modules.gfpgan_model as gfpgan
|
65 |
+
import modules.img2img
|
66 |
+
|
67 |
+
import modules.lowvram
|
68 |
+
import modules.scripts
|
69 |
+
import modules.sd_hijack
|
70 |
+
import modules.sd_hijack_optimizations
|
71 |
+
import modules.sd_models
|
72 |
+
import modules.sd_vae
|
73 |
+
import modules.sd_unet
|
74 |
+
import modules.txt2img
|
75 |
+
import modules.script_callbacks
|
76 |
+
import modules.textual_inversion.textual_inversion
|
77 |
+
import modules.progress
|
78 |
+
|
79 |
+
import modules.ui
|
80 |
+
from modules import modelloader
|
81 |
+
from modules.shared import cmd_opts
|
82 |
+
import modules.hypernetworks.hypernetwork
|
83 |
+
|
84 |
+
startup_timer.record("other imports")
|
85 |
+
|
86 |
+
|
87 |
+
if cmd_opts.server_name:
|
88 |
+
server_name = cmd_opts.server_name
|
89 |
+
else:
|
90 |
+
server_name = "0.0.0.0" if cmd_opts.listen else None
|
91 |
+
|
92 |
+
|
93 |
+
def fix_asyncio_event_loop_policy():
|
94 |
+
"""
|
95 |
+
The default `asyncio` event loop policy only automatically creates
|
96 |
+
event loops in the main threads. Other threads must create event
|
97 |
+
loops explicitly or `asyncio.get_event_loop` (and therefore
|
98 |
+
`.IOLoop.current`) will fail. Installing this policy allows event
|
99 |
+
loops to be created automatically on any thread, matching the
|
100 |
+
behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2).
|
101 |
+
"""
|
102 |
+
|
103 |
+
import asyncio
|
104 |
+
|
105 |
+
if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"):
|
106 |
+
# "Any thread" and "selector" should be orthogonal, but there's not a clean
|
107 |
+
# interface for composing policies so pick the right base.
|
108 |
+
_BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore
|
109 |
+
else:
|
110 |
+
_BasePolicy = asyncio.DefaultEventLoopPolicy
|
111 |
+
|
112 |
+
class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore
|
113 |
+
"""Event loop policy that allows loop creation on any thread.
|
114 |
+
Usage::
|
115 |
+
|
116 |
+
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
|
117 |
+
"""
|
118 |
+
|
119 |
+
def get_event_loop(self) -> asyncio.AbstractEventLoop:
|
120 |
+
try:
|
121 |
+
return super().get_event_loop()
|
122 |
+
except (RuntimeError, AssertionError):
|
123 |
+
# This was an AssertionError in python 3.4.2 (which ships with debian jessie)
|
124 |
+
# and changed to a RuntimeError in 3.4.3.
|
125 |
+
# "There is no current event loop in thread %r"
|
126 |
+
loop = self.new_event_loop()
|
127 |
+
self.set_event_loop(loop)
|
128 |
+
return loop
|
129 |
+
|
130 |
+
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
|
131 |
+
|
132 |
+
|
133 |
+
def check_versions():
|
134 |
+
if shared.cmd_opts.skip_version_check:
|
135 |
+
return
|
136 |
+
|
137 |
+
expected_torch_version = "2.0.0"
|
138 |
+
|
139 |
+
if version.parse(torch.__version__) < version.parse(expected_torch_version):
|
140 |
+
errors.print_error_explanation(f"""
|
141 |
+
You are running torch {torch.__version__}.
|
142 |
+
The program is tested to work with torch {expected_torch_version}.
|
143 |
+
To reinstall the desired version, run with commandline flag --reinstall-torch.
|
144 |
+
Beware that this will cause a lot of large files to be downloaded, as well as
|
145 |
+
there are reports of issues with training tab on the latest version.
|
146 |
+
|
147 |
+
Use --skip-version-check commandline argument to disable this check.
|
148 |
+
""".strip())
|
149 |
+
|
150 |
+
expected_xformers_version = "0.0.20"
|
151 |
+
if shared.xformers_available:
|
152 |
+
import xformers
|
153 |
+
|
154 |
+
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
|
155 |
+
errors.print_error_explanation(f"""
|
156 |
+
You are running xformers {xformers.__version__}.
|
157 |
+
The program is tested to work with xformers {expected_xformers_version}.
|
158 |
+
To reinstall the desired version, run with commandline flag --reinstall-xformers.
|
159 |
+
|
160 |
+
Use --skip-version-check commandline argument to disable this check.
|
161 |
+
""".strip())
|
162 |
+
|
163 |
+
|
164 |
+
def restore_config_state_file():
|
165 |
+
config_state_file = shared.opts.restore_config_state_file
|
166 |
+
if config_state_file == "":
|
167 |
+
return
|
168 |
+
|
169 |
+
shared.opts.restore_config_state_file = ""
|
170 |
+
shared.opts.save(shared.config_filename)
|
171 |
+
|
172 |
+
if os.path.isfile(config_state_file):
|
173 |
+
print(f"*** About to restore extension state from file: {config_state_file}")
|
174 |
+
with open(config_state_file, "r", encoding="utf-8") as f:
|
175 |
+
config_state = json.load(f)
|
176 |
+
config_states.restore_extension_config(config_state)
|
177 |
+
startup_timer.record("restore extension config")
|
178 |
+
elif config_state_file:
|
179 |
+
print(f"!!! Config state backup not found: {config_state_file}")
|
180 |
+
|
181 |
+
|
182 |
+
def validate_tls_options():
|
183 |
+
if not (cmd_opts.tls_keyfile and cmd_opts.tls_certfile):
|
184 |
+
return
|
185 |
+
|
186 |
+
try:
|
187 |
+
if not os.path.exists(cmd_opts.tls_keyfile):
|
188 |
+
print("Invalid path to TLS keyfile given")
|
189 |
+
if not os.path.exists(cmd_opts.tls_certfile):
|
190 |
+
print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
|
191 |
+
except TypeError:
|
192 |
+
cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
|
193 |
+
print("TLS setup invalid, running webui without TLS")
|
194 |
+
else:
|
195 |
+
print("Running with TLS")
|
196 |
+
startup_timer.record("TLS")
|
197 |
+
|
198 |
+
|
199 |
+
def get_gradio_auth_creds() -> Iterable[tuple[str, ...]]:
|
200 |
+
"""
|
201 |
+
Convert the gradio_auth and gradio_auth_path commandline arguments into
|
202 |
+
an iterable of (username, password) tuples.
|
203 |
+
"""
|
204 |
+
def process_credential_line(s) -> tuple[str, ...] | None:
|
205 |
+
s = s.strip()
|
206 |
+
if not s:
|
207 |
+
return None
|
208 |
+
return tuple(s.split(':', 1))
|
209 |
+
|
210 |
+
if cmd_opts.gradio_auth:
|
211 |
+
for cred in cmd_opts.gradio_auth.split(','):
|
212 |
+
cred = process_credential_line(cred)
|
213 |
+
if cred:
|
214 |
+
yield cred
|
215 |
+
|
216 |
+
if cmd_opts.gradio_auth_path:
|
217 |
+
with open(cmd_opts.gradio_auth_path, 'r', encoding="utf8") as file:
|
218 |
+
for line in file.readlines():
|
219 |
+
for cred in line.strip().split(','):
|
220 |
+
cred = process_credential_line(cred)
|
221 |
+
if cred:
|
222 |
+
yield cred
|
223 |
+
|
224 |
+
|
225 |
+
def configure_sigint_handler():
|
226 |
+
# make the program just exit at ctrl+c without waiting for anything
|
227 |
+
def sigint_handler(sig, frame):
|
228 |
+
print(f'Interrupted with signal {sig} in {frame}')
|
229 |
+
os._exit(0)
|
230 |
+
|
231 |
+
if not os.environ.get("COVERAGE_RUN"):
|
232 |
+
# Don't install the immediate-quit handler when running under coverage,
|
233 |
+
# as then the coverage report won't be generated.
|
234 |
+
signal.signal(signal.SIGINT, sigint_handler)
|
235 |
+
|
236 |
+
|
237 |
+
def configure_opts_onchange():
|
238 |
+
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False)
|
239 |
+
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
240 |
+
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
241 |
+
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
|
242 |
+
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
|
243 |
+
shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: modules.sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
|
244 |
+
startup_timer.record("opts onchange")
|
245 |
+
|
246 |
+
|
247 |
+
def initialize():
|
248 |
+
fix_asyncio_event_loop_policy()
|
249 |
+
validate_tls_options()
|
250 |
+
configure_sigint_handler()
|
251 |
+
check_versions()
|
252 |
+
modelloader.cleanup_models()
|
253 |
+
configure_opts_onchange()
|
254 |
+
|
255 |
+
modules.sd_models.setup_model()
|
256 |
+
startup_timer.record("setup SD model")
|
257 |
+
|
258 |
+
codeformer.setup_model(cmd_opts.codeformer_models_path)
|
259 |
+
startup_timer.record("setup codeformer")
|
260 |
+
|
261 |
+
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
|
262 |
+
startup_timer.record("setup gfpgan")
|
263 |
+
|
264 |
+
initialize_rest(reload_script_modules=False)
|
265 |
+
|
266 |
+
|
267 |
+
def initialize_rest(*, reload_script_modules=False):
|
268 |
+
"""
|
269 |
+
Called both from initialize() and when reloading the webui.
|
270 |
+
"""
|
271 |
+
sd_samplers.set_samplers()
|
272 |
+
extensions.list_extensions()
|
273 |
+
startup_timer.record("list extensions")
|
274 |
+
|
275 |
+
restore_config_state_file()
|
276 |
+
|
277 |
+
if cmd_opts.ui_debug_mode:
|
278 |
+
shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
|
279 |
+
modules.scripts.load_scripts()
|
280 |
+
return
|
281 |
+
|
282 |
+
modules.sd_models.list_models()
|
283 |
+
startup_timer.record("list SD models")
|
284 |
+
|
285 |
+
localization.list_localizations(cmd_opts.localizations_dir)
|
286 |
+
|
287 |
+
with startup_timer.subcategory("load scripts"):
|
288 |
+
modules.scripts.load_scripts()
|
289 |
+
|
290 |
+
if reload_script_modules:
|
291 |
+
for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
|
292 |
+
importlib.reload(module)
|
293 |
+
startup_timer.record("reload script modules")
|
294 |
+
|
295 |
+
modelloader.load_upscalers()
|
296 |
+
startup_timer.record("load upscalers")
|
297 |
+
|
298 |
+
modules.sd_vae.refresh_vae_list()
|
299 |
+
startup_timer.record("refresh VAE")
|
300 |
+
modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
|
301 |
+
startup_timer.record("refresh textual inversion templates")
|
302 |
+
|
303 |
+
modules.script_callbacks.on_list_optimizers(modules.sd_hijack_optimizations.list_optimizers)
|
304 |
+
modules.sd_hijack.list_optimizers()
|
305 |
+
startup_timer.record("scripts list_optimizers")
|
306 |
+
|
307 |
+
modules.sd_unet.list_unets()
|
308 |
+
startup_timer.record("scripts list_unets")
|
309 |
+
|
310 |
+
def load_model():
|
311 |
+
"""
|
312 |
+
Accesses shared.sd_model property to load model.
|
313 |
+
After it's available, if it has been loaded before this access by some extension,
|
314 |
+
its optimization may be None because the list of optimizaers has neet been filled
|
315 |
+
by that time, so we apply optimization again.
|
316 |
+
"""
|
317 |
+
|
318 |
+
shared.sd_model # noqa: B018
|
319 |
+
|
320 |
+
if modules.sd_hijack.current_optimizer is None:
|
321 |
+
modules.sd_hijack.apply_optimizations()
|
322 |
+
|
323 |
+
Thread(target=load_model).start()
|
324 |
+
|
325 |
+
Thread(target=devices.first_time_calculation).start()
|
326 |
+
|
327 |
+
shared.reload_hypernetworks()
|
328 |
+
startup_timer.record("reload hypernetworks")
|
329 |
+
|
330 |
+
ui_extra_networks.initialize()
|
331 |
+
ui_extra_networks.register_default_pages()
|
332 |
+
|
333 |
+
extra_networks.initialize()
|
334 |
+
extra_networks.register_default_extra_networks()
|
335 |
+
startup_timer.record("initialize extra networks")
|
336 |
+
|
337 |
+
|
338 |
+
def setup_middleware(app):
|
339 |
+
app.middleware_stack = None # reset current middleware to allow modifying user provided list
|
340 |
+
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
341 |
+
configure_cors_middleware(app)
|
342 |
+
app.build_middleware_stack() # rebuild middleware stack on-the-fly
|
343 |
+
|
344 |
+
|
345 |
+
def configure_cors_middleware(app):
|
346 |
+
cors_options = {
|
347 |
+
"allow_methods": ["*"],
|
348 |
+
"allow_headers": ["*"],
|
349 |
+
"allow_credentials": True,
|
350 |
+
}
|
351 |
+
if cmd_opts.cors_allow_origins:
|
352 |
+
cors_options["allow_origins"] = cmd_opts.cors_allow_origins.split(',')
|
353 |
+
if cmd_opts.cors_allow_origins_regex:
|
354 |
+
cors_options["allow_origin_regex"] = cmd_opts.cors_allow_origins_regex
|
355 |
+
app.add_middleware(CORSMiddleware, **cors_options)
|
356 |
+
|
357 |
+
|
358 |
+
def create_api(app):
|
359 |
+
from modules.api.api import Api
|
360 |
+
api = Api(app, queue_lock)
|
361 |
+
return api
|
362 |
+
|
363 |
+
|
364 |
+
def api_only():
|
365 |
+
initialize()
|
366 |
+
|
367 |
+
app = FastAPI()
|
368 |
+
setup_middleware(app)
|
369 |
+
api = create_api(app)
|
370 |
+
|
371 |
+
modules.script_callbacks.app_started_callback(None, app)
|
372 |
+
|
373 |
+
print(f"Startup time: {startup_timer.summary()}.")
|
374 |
+
api.launch(
|
375 |
+
server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1",
|
376 |
+
port=cmd_opts.port if cmd_opts.port else 7861,
|
377 |
+
root_path=f"/{cmd_opts.subpath}" if cmd_opts.subpath else ""
|
378 |
+
)
|
379 |
+
|
380 |
+
|
381 |
+
def webui():
|
382 |
+
launch_api = cmd_opts.api
|
383 |
+
initialize()
|
384 |
+
|
385 |
+
while 1:
|
386 |
+
if shared.opts.clean_temp_dir_at_start:
|
387 |
+
ui_tempdir.cleanup_tmpdr()
|
388 |
+
startup_timer.record("cleanup temp dir")
|
389 |
+
|
390 |
+
modules.script_callbacks.before_ui_callback()
|
391 |
+
startup_timer.record("scripts before_ui_callback")
|
392 |
+
|
393 |
+
shared.demo = modules.ui.create_ui()
|
394 |
+
startup_timer.record("create ui")
|
395 |
+
|
396 |
+
if not cmd_opts.no_gradio_queue:
|
397 |
+
shared.demo.queue(concurrency_count=16)
|
398 |
+
else:
|
399 |
+
print('Server queues disabled')
|
400 |
+
shared.demo.progress_tracking = False
|
401 |
+
|
402 |
+
gradio_auth_creds = list(get_gradio_auth_creds()) or None
|
403 |
+
|
404 |
+
app, local_url, share_url = shared.demo.launch(
|
405 |
+
share=cmd_opts.share,
|
406 |
+
server_name=server_name,
|
407 |
+
server_port=cmd_opts.port,
|
408 |
+
ssl_keyfile=cmd_opts.tls_keyfile,
|
409 |
+
ssl_certfile=cmd_opts.tls_certfile,
|
410 |
+
ssl_verify=cmd_opts.disable_tls_verify,
|
411 |
+
debug=cmd_opts.gradio_debug,
|
412 |
+
auth=gradio_auth_creds,
|
413 |
+
inbrowser=cmd_opts.autolaunch and os.getenv('SD_WEBUI_RESTARTING') != '1',
|
414 |
+
prevent_thread_lock=True,
|
415 |
+
allowed_paths=cmd_opts.gradio_allowed_path,
|
416 |
+
app_kwargs={
|
417 |
+
"docs_url": "/docs",
|
418 |
+
"redoc_url": "/redoc",
|
419 |
+
},
|
420 |
+
root_path=f"/{cmd_opts.subpath}" if cmd_opts.subpath else "",
|
421 |
+
)
|
422 |
+
|
423 |
+
# after initial launch, disable --autolaunch for subsequent restarts
|
424 |
+
cmd_opts.autolaunch = False
|
425 |
+
|
426 |
+
startup_timer.record("gradio launch")
|
427 |
+
|
428 |
+
# gradio uses a very open CORS policy via app.user_middleware, which makes it possible for
|
429 |
+
# an attacker to trick the user into opening a malicious HTML page, which makes a request to the
|
430 |
+
# running web ui and do whatever the attacker wants, including installing an extension and
|
431 |
+
# running its code. We disable this here. Suggested by RyotaK.
|
432 |
+
app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware']
|
433 |
+
|
434 |
+
setup_middleware(app)
|
435 |
+
|
436 |
+
modules.progress.setup_progress_api(app)
|
437 |
+
modules.ui.setup_ui_api(app)
|
438 |
+
|
439 |
+
if launch_api:
|
440 |
+
create_api(app)
|
441 |
+
|
442 |
+
ui_extra_networks.add_pages_to_demo(app)
|
443 |
+
|
444 |
+
startup_timer.record("add APIs")
|
445 |
+
|
446 |
+
with startup_timer.subcategory("app_started_callback"):
|
447 |
+
modules.script_callbacks.app_started_callback(shared.demo, app)
|
448 |
+
|
449 |
+
timer.startup_record = startup_timer.dump()
|
450 |
+
print(f"Startup time: {startup_timer.summary()}.")
|
451 |
+
|
452 |
+
try:
|
453 |
+
while True:
|
454 |
+
server_command = shared.state.wait_for_server_command(timeout=5)
|
455 |
+
if server_command:
|
456 |
+
if server_command in ("stop", "restart"):
|
457 |
+
break
|
458 |
+
else:
|
459 |
+
print(f"Unknown server command: {server_command}")
|
460 |
+
except KeyboardInterrupt:
|
461 |
+
print('Caught KeyboardInterrupt, stopping...')
|
462 |
+
server_command = "stop"
|
463 |
+
|
464 |
+
if server_command == "stop":
|
465 |
+
print("Stopping server...")
|
466 |
+
# If we catch a keyboard interrupt, we want to stop the server and exit.
|
467 |
+
shared.demo.close()
|
468 |
+
break
|
469 |
+
|
470 |
+
print('Restarting UI...')
|
471 |
+
shared.demo.close()
|
472 |
+
time.sleep(0.5)
|
473 |
+
startup_timer.reset()
|
474 |
+
modules.script_callbacks.app_reload_callback()
|
475 |
+
startup_timer.record("app reload callback")
|
476 |
+
modules.script_callbacks.script_unloaded_callback()
|
477 |
+
startup_timer.record("scripts unloaded callback")
|
478 |
+
initialize_rest(reload_script_modules=True)
|
479 |
+
|
480 |
+
|
481 |
+
if __name__ == "__main__":
|
482 |
+
if cmd_opts.nowebui:
|
483 |
+
api_only()
|
484 |
+
else:
|
485 |
+
webui()
|
webui.sh
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env bash
|
2 |
+
#################################################
|
3 |
+
# Please do not make any changes to this file, #
|
4 |
+
# change the variables in webui-user.sh instead #
|
5 |
+
#################################################
|
6 |
+
|
7 |
+
|
8 |
+
use_venv=1
|
9 |
+
if [[ $venv_dir == "-" ]]; then
|
10 |
+
use_venv=0
|
11 |
+
fi
|
12 |
+
|
13 |
+
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
14 |
+
|
15 |
+
|
16 |
+
# If run from macOS, load defaults from webui-macos-env.sh
|
17 |
+
if [[ "$OSTYPE" == "darwin"* ]]; then
|
18 |
+
if [[ -f "$SCRIPT_DIR"/webui-macos-env.sh ]]
|
19 |
+
then
|
20 |
+
source "$SCRIPT_DIR"/webui-macos-env.sh
|
21 |
+
fi
|
22 |
+
fi
|
23 |
+
|
24 |
+
# Read variables from webui-user.sh
|
25 |
+
# shellcheck source=/dev/null
|
26 |
+
if [[ -f "$SCRIPT_DIR"/webui-user.sh ]]
|
27 |
+
then
|
28 |
+
source "$SCRIPT_DIR"/webui-user.sh
|
29 |
+
fi
|
30 |
+
|
31 |
+
# Set defaults
|
32 |
+
# Install directory without trailing slash
|
33 |
+
if [[ -z "${install_dir}" ]]
|
34 |
+
then
|
35 |
+
install_dir="$SCRIPT_DIR"
|
36 |
+
fi
|
37 |
+
|
38 |
+
# Name of the subdirectory (defaults to stable-diffusion-webui)
|
39 |
+
if [[ -z "${clone_dir}" ]]
|
40 |
+
then
|
41 |
+
clone_dir="stable-diffusion-webui-ux"
|
42 |
+
fi
|
43 |
+
|
44 |
+
# python3 executable
|
45 |
+
if [[ -z "${python_cmd}" ]]
|
46 |
+
then
|
47 |
+
python_cmd="python3"
|
48 |
+
fi
|
49 |
+
|
50 |
+
# git executable
|
51 |
+
if [[ -z "${GIT}" ]]
|
52 |
+
then
|
53 |
+
export GIT="git"
|
54 |
+
fi
|
55 |
+
|
56 |
+
# python3 venv without trailing slash (defaults to ${install_dir}/${clone_dir}/venv)
|
57 |
+
if [[ -z "${venv_dir}" ]] && [[ $use_venv -eq 1 ]]
|
58 |
+
then
|
59 |
+
venv_dir="venv"
|
60 |
+
fi
|
61 |
+
|
62 |
+
if [[ -z "${LAUNCH_SCRIPT}" ]]
|
63 |
+
then
|
64 |
+
LAUNCH_SCRIPT="launch.py"
|
65 |
+
fi
|
66 |
+
|
67 |
+
# this script cannot be run as root by default
|
68 |
+
can_run_as_root=0
|
69 |
+
|
70 |
+
# read any command line flags to the webui.sh script
|
71 |
+
while getopts "f" flag > /dev/null 2>&1
|
72 |
+
do
|
73 |
+
case ${flag} in
|
74 |
+
f) can_run_as_root=1;;
|
75 |
+
*) break;;
|
76 |
+
esac
|
77 |
+
done
|
78 |
+
|
79 |
+
# Disable sentry logging
|
80 |
+
export ERROR_REPORTING=FALSE
|
81 |
+
|
82 |
+
# Do not reinstall existing pip packages on Debian/Ubuntu
|
83 |
+
export PIP_IGNORE_INSTALLED=0
|
84 |
+
|
85 |
+
# Pretty print
|
86 |
+
delimiter="################################################################"
|
87 |
+
|
88 |
+
printf "\n%s\n" "${delimiter}"
|
89 |
+
printf "\e[1m\e[32mInstall script for stable-diffusion + Web UI\n"
|
90 |
+
printf "\e[1m\e[34mTested on Debian 11 (Bullseye)\e[0m"
|
91 |
+
printf "\n%s\n" "${delimiter}"
|
92 |
+
|
93 |
+
# Do not run as root
|
94 |
+
if [[ $(id -u) -eq 0 && can_run_as_root -eq 0 ]]
|
95 |
+
then
|
96 |
+
printf "\n%s\n" "${delimiter}"
|
97 |
+
printf "\e[1m\e[31mERROR: This script must not be launched as root, aborting...\e[0m"
|
98 |
+
printf "\n%s\n" "${delimiter}"
|
99 |
+
exit 1
|
100 |
+
else
|
101 |
+
printf "\n%s\n" "${delimiter}"
|
102 |
+
printf "Running on \e[1m\e[32m%s\e[0m user" "$(whoami)"
|
103 |
+
printf "\n%s\n" "${delimiter}"
|
104 |
+
fi
|
105 |
+
|
106 |
+
if [[ $(getconf LONG_BIT) = 32 ]]
|
107 |
+
then
|
108 |
+
printf "\n%s\n" "${delimiter}"
|
109 |
+
printf "\e[1m\e[31mERROR: Unsupported Running on a 32bit OS\e[0m"
|
110 |
+
printf "\n%s\n" "${delimiter}"
|
111 |
+
exit 1
|
112 |
+
fi
|
113 |
+
|
114 |
+
if [[ -d .git ]]
|
115 |
+
then
|
116 |
+
printf "\n%s\n" "${delimiter}"
|
117 |
+
printf "Repo already cloned, using it as install directory"
|
118 |
+
printf "\n%s\n" "${delimiter}"
|
119 |
+
install_dir="${PWD}/../"
|
120 |
+
clone_dir="${PWD##*/}"
|
121 |
+
fi
|
122 |
+
|
123 |
+
# Check prerequisites
|
124 |
+
gpu_info=$(lspci 2>/dev/null | grep -E "VGA|Display")
|
125 |
+
case "$gpu_info" in
|
126 |
+
*"Navi 1"*)
|
127 |
+
export HSA_OVERRIDE_GFX_VERSION=10.3.0
|
128 |
+
if [[ -z "${TORCH_COMMAND}" ]]
|
129 |
+
then
|
130 |
+
pyv="$(${python_cmd} -c 'import sys; print(".".join(map(str, sys.version_info[0:2])))')"
|
131 |
+
if [[ $(bc <<< "$pyv <= 3.10") -eq 1 ]]
|
132 |
+
then
|
133 |
+
# Navi users will still use torch 1.13 because 2.0 does not seem to work.
|
134 |
+
export TORCH_COMMAND="pip install torch==1.13.1+rocm5.2 torchvision==0.14.1+rocm5.2 --index-url https://download.pytorch.org/whl/rocm5.2"
|
135 |
+
else
|
136 |
+
printf "\e[1m\e[31mERROR: RX 5000 series GPUs must be using at max python 3.10, aborting...\e[0m"
|
137 |
+
exit 1
|
138 |
+
fi
|
139 |
+
fi
|
140 |
+
;;
|
141 |
+
*"Navi 2"*) export HSA_OVERRIDE_GFX_VERSION=10.3.0
|
142 |
+
;;
|
143 |
+
*"Navi 3"*) [[ -z "${TORCH_COMMAND}" ]] && \
|
144 |
+
export TORCH_COMMAND="pip install --pre torch==2.1.0.dev-20230614+rocm5.5 torchvision==0.16.0.dev-20230614+rocm5.5 --index-url https://download.pytorch.org/whl/nightly/rocm5.5"
|
145 |
+
# Navi 3 needs at least 5.5 which is only on the nightly chain
|
146 |
+
;;
|
147 |
+
*"Renoir"*) export HSA_OVERRIDE_GFX_VERSION=9.0.0
|
148 |
+
printf "\n%s\n" "${delimiter}"
|
149 |
+
printf "Experimental support for Renoir: make sure to have at least 4GB of VRAM and 10GB of RAM or enable cpu mode: --use-cpu all --no-half"
|
150 |
+
printf "\n%s\n" "${delimiter}"
|
151 |
+
;;
|
152 |
+
*)
|
153 |
+
;;
|
154 |
+
esac
|
155 |
+
if ! echo "$gpu_info" | grep -q "NVIDIA";
|
156 |
+
then
|
157 |
+
if echo "$gpu_info" | grep -q "AMD" && [[ -z "${TORCH_COMMAND}" ]]
|
158 |
+
then
|
159 |
+
export TORCH_COMMAND="pip install torch==2.0.1+rocm5.4.2 torchvision==0.15.2+rocm5.4.2 --index-url https://download.pytorch.org/whl/rocm5.4.2"
|
160 |
+
fi
|
161 |
+
fi
|
162 |
+
|
163 |
+
for preq in "${GIT}" "${python_cmd}"
|
164 |
+
do
|
165 |
+
if ! hash "${preq}" &>/dev/null
|
166 |
+
then
|
167 |
+
printf "\n%s\n" "${delimiter}"
|
168 |
+
printf "\e[1m\e[31mERROR: %s is not installed, aborting...\e[0m" "${preq}"
|
169 |
+
printf "\n%s\n" "${delimiter}"
|
170 |
+
exit 1
|
171 |
+
fi
|
172 |
+
done
|
173 |
+
|
174 |
+
if [[ $use_venv -eq 1 ]] && ! "${python_cmd}" -c "import venv" &>/dev/null
|
175 |
+
then
|
176 |
+
printf "\n%s\n" "${delimiter}"
|
177 |
+
printf "\e[1m\e[31mERROR: python3-venv is not installed, aborting...\e[0m"
|
178 |
+
printf "\n%s\n" "${delimiter}"
|
179 |
+
exit 1
|
180 |
+
fi
|
181 |
+
|
182 |
+
cd "${install_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/, aborting...\e[0m" "${install_dir}"; exit 1; }
|
183 |
+
if [[ -d "${clone_dir}" ]]
|
184 |
+
then
|
185 |
+
cd "${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
|
186 |
+
else
|
187 |
+
printf "\n%s\n" "${delimiter}"
|
188 |
+
printf "Clone stable-diffusion-webui"
|
189 |
+
printf "\n%s\n" "${delimiter}"
|
190 |
+
"${GIT}" clone https://github.com/anapnoe/stable-diffusion-webui-ux.git "${clone_dir}"
|
191 |
+
cd "${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
|
192 |
+
fi
|
193 |
+
|
194 |
+
if [[ $use_venv -eq 1 ]] && [[ -z "${VIRTUAL_ENV}" ]];
|
195 |
+
then
|
196 |
+
printf "\n%s\n" "${delimiter}"
|
197 |
+
printf "Create and activate python venv"
|
198 |
+
printf "\n%s\n" "${delimiter}"
|
199 |
+
cd "${install_dir}"/"${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
|
200 |
+
if [[ ! -d "${venv_dir}" ]]
|
201 |
+
then
|
202 |
+
"${python_cmd}" -m venv "${venv_dir}"
|
203 |
+
first_launch=1
|
204 |
+
fi
|
205 |
+
# shellcheck source=/dev/null
|
206 |
+
if [[ -f "${venv_dir}"/bin/activate ]]
|
207 |
+
then
|
208 |
+
source "${venv_dir}"/bin/activate
|
209 |
+
else
|
210 |
+
printf "\n%s\n" "${delimiter}"
|
211 |
+
printf "\e[1m\e[31mERROR: Cannot activate python venv, aborting...\e[0m"
|
212 |
+
printf "\n%s\n" "${delimiter}"
|
213 |
+
exit 1
|
214 |
+
fi
|
215 |
+
else
|
216 |
+
printf "\n%s\n" "${delimiter}"
|
217 |
+
printf "python venv already activate or run without venv: ${VIRTUAL_ENV}"
|
218 |
+
printf "\n%s\n" "${delimiter}"
|
219 |
+
fi
|
220 |
+
|
221 |
+
# Try using TCMalloc on Linux
|
222 |
+
prepare_tcmalloc() {
|
223 |
+
if [[ "${OSTYPE}" == "linux"* ]] && [[ -z "${NO_TCMALLOC}" ]] && [[ -z "${LD_PRELOAD}" ]]; then
|
224 |
+
TCMALLOC="$(PATH=/usr/sbin:$PATH ldconfig -p | grep -Po "libtcmalloc(_minimal|)\.so\.\d" | head -n 1)"
|
225 |
+
if [[ ! -z "${TCMALLOC}" ]]; then
|
226 |
+
echo "Using TCMalloc: ${TCMALLOC}"
|
227 |
+
export LD_PRELOAD="${TCMALLOC}"
|
228 |
+
else
|
229 |
+
printf "\e[1m\e[31mCannot locate TCMalloc (improves CPU memory usage)\e[0m\n"
|
230 |
+
fi
|
231 |
+
fi
|
232 |
+
}
|
233 |
+
|
234 |
+
KEEP_GOING=1
|
235 |
+
export SD_WEBUI_RESTART=tmp/restart
|
236 |
+
while [[ "$KEEP_GOING" -eq "1" ]]; do
|
237 |
+
if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]; then
|
238 |
+
printf "\n%s\n" "${delimiter}"
|
239 |
+
printf "Accelerating launch.py..."
|
240 |
+
printf "\n%s\n" "${delimiter}"
|
241 |
+
prepare_tcmalloc
|
242 |
+
accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
|
243 |
+
else
|
244 |
+
printf "\n%s\n" "${delimiter}"
|
245 |
+
printf "Launching launch.py..."
|
246 |
+
printf "\n%s\n" "${delimiter}"
|
247 |
+
prepare_tcmalloc
|
248 |
+
"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
|
249 |
+
fi
|
250 |
+
|
251 |
+
if [[ ! -f tmp/restart ]]; then
|
252 |
+
KEEP_GOING=0
|
253 |
+
fi
|
254 |
+
done
|