tomaarsen's picture
tomaarsen HF staff
Push model using huggingface_hub.
7e67fb5
metadata
language:
  - en
license: apache-2.0
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
datasets:
  - sst2
metrics:
  - precision
  - recall
  - f1
widget:
  - text: >-
      this is a story of two misfits who do n't stand a chance alone , but
      together they are magnificent . 
  - text: >-
      it does n't believe in itself , it has no sense of humor ... it 's just
      plain bored . 
  - text: >-
      the band 's courage in the face of official repression is inspiring ,
      especially for aging hippies ( this one included ) . 
  - text: 'a fast , funny , highly enjoyable movie . '
  - text: >-
      the movie achieves as great an impact by keeping these thoughts hidden as
      ... ( quills ) did by showing them . 
pipeline_tag: text-classification
co2_eq_emissions:
  emissions: 2.5933709269110308
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.027
  hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: sst2
          type: sst2
          split: test
        metrics:
          - type: accuracy
            value: 0.8588082901554405
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2

This is a SetFit model trained on the sst2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. For classification, it uses a LogisticRegression instance.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
negative
  • 'stale and uninspired . '
  • "the film 's considered approach to its subject matter is too calm and thoughtful for agitprop , and the thinness of its characterizations makes it a failure as straight drama . ' "
  • "that their charm does n't do a load of good "
positive
  • "broomfield is energized by volletta wallace 's maternal fury , her fearlessness "
  • 'flawless '
  • 'insightfully written , delicately performed '

Evaluation

Metrics

Label Accuracy
all 0.8588

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from 🤗 Hub
model = SetFitModel.from_pretrained("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2-8-shot")
# Run inference
preds = model("a fast , funny , highly enjoyable movie . ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 11.4375 33
Label Training Sample Count
negative 8
positive 8

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.1111 1 0.2126 -
1.1111 10 0.1604 -
2.2222 20 0.0224 0.1761
3.3333 30 0.0039 -
4.4444 40 0.0029 0.1935
5.5556 50 0.0026 -
6.6667 60 0.0008 0.1944
7.7778 70 0.0009 -
8.8889 80 0.0027 0.1941
10.0 90 0.0004 -
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.003 kg of CO2
  • Hours Used: 0.027 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.9.16
  • SetFit: 1.0.0.dev0
  • Sentence Transformers: 2.2.2
  • Transformers: 4.29.0
  • PyTorch: 1.13.1+cu117
  • Datasets: 2.15.0
  • Tokenizers: 0.13.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}