metadata
language:
- en
license: apache-2.0
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- sst2
metrics:
- precision
- recall
- f1
widget:
- text: >-
this is a story of two misfits who do n't stand a chance alone , but
together they are magnificent .
- text: >-
it does n't believe in itself , it has no sense of humor ... it 's just
plain bored .
- text: >-
the band 's courage in the face of official repression is inspiring ,
especially for aging hippies ( this one included ) .
- text: 'a fast , funny , highly enjoyable movie . '
- text: >-
the movie achieves as great an impact by keeping these thoughts hidden as
... ( quills ) did by showing them .
pipeline_tag: text-classification
co2_eq_emissions:
emissions: 2.5933709269110308
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.027
hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: sst2
type: sst2
split: test
metrics:
- type: accuracy
value: 0.8588082901554405
name: Accuracy
SetFit with sentence-transformers/paraphrase-mpnet-base-v2 on sst2
This is a SetFit model trained on the sst2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. For classification, it uses a LogisticRegression instance.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance.
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
- Training Dataset: sst2
- Language: en
- License: apache-2.0
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8588 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from 🤗 Hub
model = SetFitModel.from_pretrained("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2-8-shot")
# Run inference
preds = model("a fast , funny , highly enjoyable movie . ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 11.4375 | 33 |
Label | Training Sample Count |
---|---|
negative | 8 |
positive | 8 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1111 | 1 | 0.2126 | - |
1.1111 | 10 | 0.1604 | - |
2.2222 | 20 | 0.0224 | 0.1761 |
3.3333 | 30 | 0.0039 | - |
4.4444 | 40 | 0.0029 | 0.1935 |
5.5556 | 50 | 0.0026 | - |
6.6667 | 60 | 0.0008 | 0.1944 |
7.7778 | 70 | 0.0009 | - |
8.8889 | 80 | 0.0027 | 0.1941 |
10.0 | 90 | 0.0004 | - |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Carbon Emitted: 0.003 kg of CO2
- Hours Used: 0.027 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.9.16
- SetFit: 1.0.0.dev0
- Sentence Transformers: 2.2.2
- Transformers: 4.29.0
- PyTorch: 1.13.1+cu117
- Datasets: 2.15.0
- Tokenizers: 0.13.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}