tomaarsen HF Staff commited on
Commit
c774022
·
verified ·
1 Parent(s): dadf87a

Create train_script.py

Browse files
Files changed (1) hide show
  1. train_script.py +102 -0
train_script.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ from datasets import load_dataset
4
+
5
+ from sentence_transformers import (
6
+ SentenceTransformer,
7
+ SentenceTransformerModelCardData,
8
+ SentenceTransformerTrainer,
9
+ SentenceTransformerTrainingArguments,
10
+ )
11
+ from sentence_transformers.evaluation import InformationRetrievalEvaluator
12
+ from sentence_transformers.losses import MultipleNegativesRankingLoss
13
+ from sentence_transformers.training_args import BatchSamplers
14
+ import logging
15
+
16
+ logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
17
+ logging.getLogger("httpx").setLevel(logging.WARNING)
18
+
19
+ # 1. Load a model to finetune with 2. (Optional) model card data
20
+ model = SentenceTransformer(
21
+ "google/siglip-base-patch16-512",
22
+ model_card_data=SentenceTransformerModelCardData(
23
+ language="en",
24
+ license="apache-2.0",
25
+ model_name="Google SigLIP (512x512 resolution) model trained on COCO Captions",
26
+ ),
27
+ tokenizer_kwargs={"do_convert_rgb": True}
28
+ )
29
+
30
+ # 3. Load a dataset to finetune on
31
+ dataset = load_dataset("jxie/coco_captions")
32
+ train_dataset = dataset["train"].select(range(10_000))
33
+ eval_dataset = dataset["validation"].select(range(1_000))
34
+ test_dataset = dataset["test"].select(range(1_000))
35
+
36
+ # 4. Define a loss function
37
+ loss = MultipleNegativesRankingLoss(model)
38
+
39
+ # 5. (Optional) Specify training arguments
40
+ run_name = "google-siglip-base-coco"
41
+ args = SentenceTransformerTrainingArguments(
42
+ # Required parameter:
43
+ output_dir=f"models/{run_name}",
44
+ # Optional training parameters:
45
+ num_train_epochs=1,
46
+ per_device_train_batch_size=16,
47
+ per_device_eval_batch_size=16,
48
+ learning_rate=2e-5,
49
+ warmup_ratio=0.1,
50
+ fp16=False, # Set to False if you get an error that your GPU can't run on FP16
51
+ bf16=True, # Set to True if you have a GPU that supports BF16
52
+ batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
53
+ # Optional tracking/debugging parameters:
54
+ eval_strategy="steps",
55
+ eval_steps=0.1,
56
+ save_strategy="steps",
57
+ save_steps=0.1,
58
+ save_total_limit=2,
59
+ logging_steps=0.01,
60
+ run_name=run_name, # Will be used in W&B if `wandb` is installed
61
+ )
62
+
63
+ # 6. (Optional) Create an evaluator & evaluate the base model
64
+ eval_queries = {qid: sample["caption"] for qid, sample in enumerate(eval_dataset)}
65
+ eval_corpus = {sample["cocoid"]: sample["image"] for sample in eval_dataset}
66
+ eval_relevant_docs = {qid: [sample["cocoid"]] for qid, sample in enumerate(eval_dataset)}
67
+ eval_evaluator = InformationRetrievalEvaluator(
68
+ queries=eval_queries,
69
+ corpus=eval_corpus,
70
+ relevant_docs=eval_relevant_docs,
71
+ name="coco-eval",
72
+ )
73
+ eval_evaluator(model)
74
+
75
+ # 7. Create a trainer & train
76
+ trainer = SentenceTransformerTrainer(
77
+ model=model,
78
+ args=args,
79
+ train_dataset=train_dataset.select_columns(["image", "caption"]),
80
+ eval_dataset=eval_dataset.select_columns(["image", "caption"]),
81
+ loss=loss,
82
+ evaluator=eval_evaluator,
83
+ )
84
+ trainer.train()
85
+
86
+ # (Optional) Evaluate the trained model on the test set
87
+ test_queries = {qid: sample["caption"] for qid, sample in enumerate(test_dataset)}
88
+ test_corpus = {sample["cocoid"]: sample["image"] for sample in test_dataset}
89
+ test_relevant_docs = {qid: [sample["cocoid"]] for qid, sample in enumerate(test_dataset)}
90
+ test_evaluator = InformationRetrievalEvaluator(
91
+ queries=test_queries,
92
+ corpus=test_corpus,
93
+ relevant_docs=test_relevant_docs,
94
+ name="coco-test",
95
+ )
96
+ test_evaluator(model)
97
+
98
+ # 8. Save the trained model
99
+ model.save_pretrained(f"models/{run_name}/final")
100
+
101
+ # 9. (Optional) Push it to the Hugging Face Hub
102
+ model.push_to_hub(run_name, private=True)