Add new SentenceTransformer model
Browse files- README.md +646 -0
- config.json +37 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +8 -0
- sentence_bert_config.json +14 -0
- special_tokens_map.json +23 -0
- spiece.model +3 -0
- tokenizer_config.json +35 -0
README.md
ADDED
|
@@ -0,0 +1,646 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- dense
|
| 10 |
+
- generated_from_trainer
|
| 11 |
+
- dataset_size:10000
|
| 12 |
+
- loss:MultipleNegativesRankingLoss
|
| 13 |
+
base_model: google/siglip-base-patch16-512
|
| 14 |
+
widget:
|
| 15 |
+
- source_sentence: A man standing next to a little girl riding a horse.
|
| 16 |
+
sentences:
|
| 17 |
+
- The woman is working on her computer at the desk.
|
| 18 |
+
- A young man holding an umbrella next to a herd of cattle.
|
| 19 |
+
- 'a person sitting at a desk with a keyboard and monitor '
|
| 20 |
+
- source_sentence: 'A car at an intersection while a man is crossing the street. '
|
| 21 |
+
sentences:
|
| 22 |
+
- A plane that is flying in the air.
|
| 23 |
+
- a small girl sitting on a chair holding a white bear
|
| 24 |
+
- A young toddler walks across the grass in a park.
|
| 25 |
+
- source_sentence: A lady riding her bicycle on the side of a street.
|
| 26 |
+
sentences:
|
| 27 |
+
- Flowers hang from a small decorative post in a yard.
|
| 28 |
+
- Flowers in a clear vase sitting on a table.
|
| 29 |
+
- The toilet is near the door in the bathroom.
|
| 30 |
+
- source_sentence: 'A group of zebras standing beside each other in the desert. '
|
| 31 |
+
sentences:
|
| 32 |
+
- The bathroom is clean and ready for us to use.
|
| 33 |
+
- A woman throwing a frisbee as a child looks on.
|
| 34 |
+
- a bird with a pink eye is sitting on a branch in the woods.
|
| 35 |
+
- source_sentence: A large desk by a window is neatly arranged.
|
| 36 |
+
sentences:
|
| 37 |
+
- An old toilet sits in dirt with a helmet on top.
|
| 38 |
+
- A lady sitting at an enormous dining table with lots of food.
|
| 39 |
+
- A long hot dog on a plate on a table.
|
| 40 |
+
datasets:
|
| 41 |
+
- jxie/coco_captions
|
| 42 |
+
pipeline_tag: sentence-similarity
|
| 43 |
+
library_name: sentence-transformers
|
| 44 |
+
metrics:
|
| 45 |
+
- cosine_accuracy@1
|
| 46 |
+
- cosine_accuracy@3
|
| 47 |
+
- cosine_accuracy@5
|
| 48 |
+
- cosine_accuracy@10
|
| 49 |
+
- cosine_precision@1
|
| 50 |
+
- cosine_precision@3
|
| 51 |
+
- cosine_precision@5
|
| 52 |
+
- cosine_precision@10
|
| 53 |
+
- cosine_recall@1
|
| 54 |
+
- cosine_recall@3
|
| 55 |
+
- cosine_recall@5
|
| 56 |
+
- cosine_recall@10
|
| 57 |
+
- cosine_ndcg@10
|
| 58 |
+
- cosine_mrr@10
|
| 59 |
+
- cosine_map@100
|
| 60 |
+
co2_eq_emissions:
|
| 61 |
+
emissions: 14.565152777100327
|
| 62 |
+
energy_consumed: 0.054424347688532056
|
| 63 |
+
source: codecarbon
|
| 64 |
+
training_type: fine-tuning
|
| 65 |
+
on_cloud: false
|
| 66 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 67 |
+
ram_total_size: 31.777088165283203
|
| 68 |
+
hours_used: 0.169
|
| 69 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
| 70 |
+
model-index:
|
| 71 |
+
- name: Google SigLIP (512x512 resolution) model trained on COCO Captions
|
| 72 |
+
results:
|
| 73 |
+
- task:
|
| 74 |
+
type: information-retrieval
|
| 75 |
+
name: Information Retrieval
|
| 76 |
+
dataset:
|
| 77 |
+
name: coco eval
|
| 78 |
+
type: coco-eval
|
| 79 |
+
metrics:
|
| 80 |
+
- type: cosine_accuracy@1
|
| 81 |
+
value: 0.755
|
| 82 |
+
name: Cosine Accuracy@1
|
| 83 |
+
- type: cosine_accuracy@3
|
| 84 |
+
value: 0.944
|
| 85 |
+
name: Cosine Accuracy@3
|
| 86 |
+
- type: cosine_accuracy@5
|
| 87 |
+
value: 0.975
|
| 88 |
+
name: Cosine Accuracy@5
|
| 89 |
+
- type: cosine_accuracy@10
|
| 90 |
+
value: 0.992
|
| 91 |
+
name: Cosine Accuracy@10
|
| 92 |
+
- type: cosine_precision@1
|
| 93 |
+
value: 0.755
|
| 94 |
+
name: Cosine Precision@1
|
| 95 |
+
- type: cosine_precision@3
|
| 96 |
+
value: 0.31466666666666665
|
| 97 |
+
name: Cosine Precision@3
|
| 98 |
+
- type: cosine_precision@5
|
| 99 |
+
value: 0.19500000000000003
|
| 100 |
+
name: Cosine Precision@5
|
| 101 |
+
- type: cosine_precision@10
|
| 102 |
+
value: 0.09920000000000001
|
| 103 |
+
name: Cosine Precision@10
|
| 104 |
+
- type: cosine_recall@1
|
| 105 |
+
value: 0.755
|
| 106 |
+
name: Cosine Recall@1
|
| 107 |
+
- type: cosine_recall@3
|
| 108 |
+
value: 0.944
|
| 109 |
+
name: Cosine Recall@3
|
| 110 |
+
- type: cosine_recall@5
|
| 111 |
+
value: 0.975
|
| 112 |
+
name: Cosine Recall@5
|
| 113 |
+
- type: cosine_recall@10
|
| 114 |
+
value: 0.992
|
| 115 |
+
name: Cosine Recall@10
|
| 116 |
+
- type: cosine_ndcg@10
|
| 117 |
+
value: 0.8860228540949219
|
| 118 |
+
name: Cosine Ndcg@10
|
| 119 |
+
- type: cosine_mrr@10
|
| 120 |
+
value: 0.8505285714285713
|
| 121 |
+
name: Cosine Mrr@10
|
| 122 |
+
- type: cosine_map@100
|
| 123 |
+
value: 0.8508208051006964
|
| 124 |
+
name: Cosine Map@100
|
| 125 |
+
- task:
|
| 126 |
+
type: information-retrieval
|
| 127 |
+
name: Information Retrieval
|
| 128 |
+
dataset:
|
| 129 |
+
name: coco test
|
| 130 |
+
type: coco-test
|
| 131 |
+
metrics:
|
| 132 |
+
- type: cosine_accuracy@1
|
| 133 |
+
value: 0.754
|
| 134 |
+
name: Cosine Accuracy@1
|
| 135 |
+
- type: cosine_accuracy@3
|
| 136 |
+
value: 0.935
|
| 137 |
+
name: Cosine Accuracy@3
|
| 138 |
+
- type: cosine_accuracy@5
|
| 139 |
+
value: 0.976
|
| 140 |
+
name: Cosine Accuracy@5
|
| 141 |
+
- type: cosine_accuracy@10
|
| 142 |
+
value: 0.992
|
| 143 |
+
name: Cosine Accuracy@10
|
| 144 |
+
- type: cosine_precision@1
|
| 145 |
+
value: 0.754
|
| 146 |
+
name: Cosine Precision@1
|
| 147 |
+
- type: cosine_precision@3
|
| 148 |
+
value: 0.31166666666666665
|
| 149 |
+
name: Cosine Precision@3
|
| 150 |
+
- type: cosine_precision@5
|
| 151 |
+
value: 0.1952
|
| 152 |
+
name: Cosine Precision@5
|
| 153 |
+
- type: cosine_precision@10
|
| 154 |
+
value: 0.09920000000000001
|
| 155 |
+
name: Cosine Precision@10
|
| 156 |
+
- type: cosine_recall@1
|
| 157 |
+
value: 0.754
|
| 158 |
+
name: Cosine Recall@1
|
| 159 |
+
- type: cosine_recall@3
|
| 160 |
+
value: 0.935
|
| 161 |
+
name: Cosine Recall@3
|
| 162 |
+
- type: cosine_recall@5
|
| 163 |
+
value: 0.976
|
| 164 |
+
name: Cosine Recall@5
|
| 165 |
+
- type: cosine_recall@10
|
| 166 |
+
value: 0.992
|
| 167 |
+
name: Cosine Recall@10
|
| 168 |
+
- type: cosine_ndcg@10
|
| 169 |
+
value: 0.8848518154761025
|
| 170 |
+
name: Cosine Ndcg@10
|
| 171 |
+
- type: cosine_mrr@10
|
| 172 |
+
value: 0.8490460317460323
|
| 173 |
+
name: Cosine Mrr@10
|
| 174 |
+
- type: cosine_map@100
|
| 175 |
+
value: 0.849432976701497
|
| 176 |
+
name: Cosine Map@100
|
| 177 |
+
---
|
| 178 |
+
|
| 179 |
+
# Google SigLIP (512x512 resolution) model trained on COCO Captions
|
| 180 |
+
|
| 181 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) on the [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 182 |
+
|
| 183 |
+
## Model Details
|
| 184 |
+
|
| 185 |
+
### Model Description
|
| 186 |
+
- **Model Type:** Sentence Transformer
|
| 187 |
+
- **Base model:** [google/siglip-base-patch16-512](https://huggingface.co/google/siglip-base-patch16-512) <!-- at revision 753a949581523b60257d93e18391e8c27f72eb22 -->
|
| 188 |
+
- **Maximum Sequence Length:** None tokens
|
| 189 |
+
- **Output Dimensionality:** None dimensions
|
| 190 |
+
- **Similarity Function:** Cosine Similarity
|
| 191 |
+
- **Training Dataset:**
|
| 192 |
+
- [coco_captions](https://huggingface.co/datasets/jxie/coco_captions)
|
| 193 |
+
- **Language:** en
|
| 194 |
+
- **License:** apache-2.0
|
| 195 |
+
|
| 196 |
+
### Model Sources
|
| 197 |
+
|
| 198 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 199 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 200 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 201 |
+
|
| 202 |
+
### Full Model Architecture
|
| 203 |
+
|
| 204 |
+
```
|
| 205 |
+
SentenceTransformer(
|
| 206 |
+
(0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'image': {'method': 'get_image_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'SiglipModel'})
|
| 207 |
+
)
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
## Usage
|
| 211 |
+
|
| 212 |
+
### Direct Usage (Sentence Transformers)
|
| 213 |
+
|
| 214 |
+
First install the Sentence Transformers library:
|
| 215 |
+
|
| 216 |
+
```bash
|
| 217 |
+
pip install -U sentence-transformers
|
| 218 |
+
```
|
| 219 |
+
|
| 220 |
+
Then you can load this model and run inference.
|
| 221 |
+
```python
|
| 222 |
+
from sentence_transformers import SentenceTransformer
|
| 223 |
+
|
| 224 |
+
# Download from the 🤗 Hub
|
| 225 |
+
model = SentenceTransformer("tomaarsen/google-siglip-base-coco")
|
| 226 |
+
# Run inference
|
| 227 |
+
sentences = [
|
| 228 |
+
'A large desk by a window is neatly arranged.',
|
| 229 |
+
'A long hot dog on a plate on a table.',
|
| 230 |
+
'A lady sitting at an enormous dining table with lots of food.',
|
| 231 |
+
]
|
| 232 |
+
embeddings = model.encode(sentences)
|
| 233 |
+
print(embeddings.shape)
|
| 234 |
+
# [3, 1024]
|
| 235 |
+
|
| 236 |
+
# Get the similarity scores for the embeddings
|
| 237 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 238 |
+
print(similarities)
|
| 239 |
+
# tensor([[1.0000, 0.1848, 0.1578],
|
| 240 |
+
# [0.1848, 1.0000, 0.5058],
|
| 241 |
+
# [0.1578, 0.5058, 1.0000]])
|
| 242 |
+
```
|
| 243 |
+
|
| 244 |
+
<!--
|
| 245 |
+
### Direct Usage (Transformers)
|
| 246 |
+
|
| 247 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 248 |
+
|
| 249 |
+
</details>
|
| 250 |
+
-->
|
| 251 |
+
|
| 252 |
+
<!--
|
| 253 |
+
### Downstream Usage (Sentence Transformers)
|
| 254 |
+
|
| 255 |
+
You can finetune this model on your own dataset.
|
| 256 |
+
|
| 257 |
+
<details><summary>Click to expand</summary>
|
| 258 |
+
|
| 259 |
+
</details>
|
| 260 |
+
-->
|
| 261 |
+
|
| 262 |
+
<!--
|
| 263 |
+
### Out-of-Scope Use
|
| 264 |
+
|
| 265 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 266 |
+
-->
|
| 267 |
+
|
| 268 |
+
## Evaluation
|
| 269 |
+
|
| 270 |
+
### Metrics
|
| 271 |
+
|
| 272 |
+
#### Information Retrieval
|
| 273 |
+
|
| 274 |
+
* Datasets: `coco-eval` and `coco-test`
|
| 275 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 276 |
+
|
| 277 |
+
| Metric | coco-eval | coco-test |
|
| 278 |
+
|:--------------------|:----------|:-----------|
|
| 279 |
+
| cosine_accuracy@1 | 0.755 | 0.754 |
|
| 280 |
+
| cosine_accuracy@3 | 0.944 | 0.935 |
|
| 281 |
+
| cosine_accuracy@5 | 0.975 | 0.976 |
|
| 282 |
+
| cosine_accuracy@10 | 0.992 | 0.992 |
|
| 283 |
+
| cosine_precision@1 | 0.755 | 0.754 |
|
| 284 |
+
| cosine_precision@3 | 0.3147 | 0.3117 |
|
| 285 |
+
| cosine_precision@5 | 0.195 | 0.1952 |
|
| 286 |
+
| cosine_precision@10 | 0.0992 | 0.0992 |
|
| 287 |
+
| cosine_recall@1 | 0.755 | 0.754 |
|
| 288 |
+
| cosine_recall@3 | 0.944 | 0.935 |
|
| 289 |
+
| cosine_recall@5 | 0.975 | 0.976 |
|
| 290 |
+
| cosine_recall@10 | 0.992 | 0.992 |
|
| 291 |
+
| **cosine_ndcg@10** | **0.886** | **0.8849** |
|
| 292 |
+
| cosine_mrr@10 | 0.8505 | 0.849 |
|
| 293 |
+
| cosine_map@100 | 0.8508 | 0.8494 |
|
| 294 |
+
|
| 295 |
+
<!--
|
| 296 |
+
## Bias, Risks and Limitations
|
| 297 |
+
|
| 298 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 299 |
+
-->
|
| 300 |
+
|
| 301 |
+
<!--
|
| 302 |
+
### Recommendations
|
| 303 |
+
|
| 304 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 305 |
+
-->
|
| 306 |
+
|
| 307 |
+
## Training Details
|
| 308 |
+
|
| 309 |
+
### Training Dataset
|
| 310 |
+
|
| 311 |
+
#### coco_captions
|
| 312 |
+
|
| 313 |
+
* Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
|
| 314 |
+
* Size: 10,000 training samples
|
| 315 |
+
* Columns: <code>image</code> and <code>caption</code>
|
| 316 |
+
* Approximate statistics based on the first 1000 samples:
|
| 317 |
+
| | image | caption |
|
| 318 |
+
|:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
|
| 319 |
+
| type | PIL.JpegImagePlugin.JpegImageFile | string |
|
| 320 |
+
| details | <ul><li></li></ul> | <ul><li>min: 28 characters</li><li>mean: 52.56 characters</li><li>max: 156 characters</li></ul> |
|
| 321 |
+
* Samples:
|
| 322 |
+
| image | caption |
|
| 323 |
+
|:----------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
|
| 324 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B60463F10></code> | <code>A woman wearing a net on her head cutting a cake. </code> |
|
| 325 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B5EB45F10></code> | <code>A woman cutting a large white sheet cake.</code> |
|
| 326 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480 at 0x16B6048B990></code> | <code>A woman wearing a hair net cutting a large sheet cake.</code> |
|
| 327 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 328 |
+
```json
|
| 329 |
+
{
|
| 330 |
+
"scale": 20.0,
|
| 331 |
+
"similarity_fct": "cos_sim",
|
| 332 |
+
"gather_across_devices": false
|
| 333 |
+
}
|
| 334 |
+
```
|
| 335 |
+
|
| 336 |
+
### Evaluation Dataset
|
| 337 |
+
|
| 338 |
+
#### coco_captions
|
| 339 |
+
|
| 340 |
+
* Dataset: [coco_captions](https://huggingface.co/datasets/jxie/coco_captions) at [a2ed90d](https://huggingface.co/datasets/jxie/coco_captions/tree/a2ed90d49b61dd13dd71f399c70f5feb897f8bec)
|
| 341 |
+
* Size: 1,000 evaluation samples
|
| 342 |
+
* Columns: <code>image</code> and <code>caption</code>
|
| 343 |
+
* Approximate statistics based on the first 1000 samples:
|
| 344 |
+
| | image | caption |
|
| 345 |
+
|:--------|:----------------------------------|:------------------------------------------------------------------------------------------------|
|
| 346 |
+
| type | PIL.JpegImagePlugin.JpegImageFile | string |
|
| 347 |
+
| details | <ul><li></li></ul> | <ul><li>min: 27 characters</li><li>mean: 52.45 characters</li><li>max: 151 characters</li></ul> |
|
| 348 |
+
* Samples:
|
| 349 |
+
| image | caption |
|
| 350 |
+
|:----------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 351 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5EE1A550></code> | <code>A child holding a flowered umbrella and petting a yak.</code> |
|
| 352 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5E41C1D0></code> | <code>A young man holding an umbrella next to a herd of cattle.</code> |
|
| 353 |
+
| <code><PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=500x336 at 0x16B5F276AD0></code> | <code>a young boy barefoot holding an umbrella touching the horn of a cow</code> |
|
| 354 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 355 |
+
```json
|
| 356 |
+
{
|
| 357 |
+
"scale": 20.0,
|
| 358 |
+
"similarity_fct": "cos_sim",
|
| 359 |
+
"gather_across_devices": false
|
| 360 |
+
}
|
| 361 |
+
```
|
| 362 |
+
|
| 363 |
+
### Training Hyperparameters
|
| 364 |
+
#### Non-Default Hyperparameters
|
| 365 |
+
|
| 366 |
+
- `eval_strategy`: steps
|
| 367 |
+
- `per_device_train_batch_size`: 16
|
| 368 |
+
- `per_device_eval_batch_size`: 16
|
| 369 |
+
- `learning_rate`: 2e-05
|
| 370 |
+
- `num_train_epochs`: 1
|
| 371 |
+
- `warmup_ratio`: 0.1
|
| 372 |
+
- `bf16`: True
|
| 373 |
+
- `batch_sampler`: no_duplicates
|
| 374 |
+
|
| 375 |
+
#### All Hyperparameters
|
| 376 |
+
<details><summary>Click to expand</summary>
|
| 377 |
+
|
| 378 |
+
- `overwrite_output_dir`: False
|
| 379 |
+
- `do_predict`: False
|
| 380 |
+
- `eval_strategy`: steps
|
| 381 |
+
- `prediction_loss_only`: True
|
| 382 |
+
- `per_device_train_batch_size`: 16
|
| 383 |
+
- `per_device_eval_batch_size`: 16
|
| 384 |
+
- `gradient_accumulation_steps`: 1
|
| 385 |
+
- `eval_accumulation_steps`: None
|
| 386 |
+
- `torch_empty_cache_steps`: None
|
| 387 |
+
- `learning_rate`: 2e-05
|
| 388 |
+
- `weight_decay`: 0.0
|
| 389 |
+
- `adam_beta1`: 0.9
|
| 390 |
+
- `adam_beta2`: 0.999
|
| 391 |
+
- `adam_epsilon`: 1e-08
|
| 392 |
+
- `max_grad_norm`: 1.0
|
| 393 |
+
- `num_train_epochs`: 1
|
| 394 |
+
- `max_steps`: -1
|
| 395 |
+
- `lr_scheduler_type`: linear
|
| 396 |
+
- `lr_scheduler_kwargs`: {}
|
| 397 |
+
- `warmup_ratio`: 0.1
|
| 398 |
+
- `warmup_steps`: 0
|
| 399 |
+
- `log_level`: passive
|
| 400 |
+
- `log_level_replica`: warning
|
| 401 |
+
- `log_on_each_node`: True
|
| 402 |
+
- `logging_nan_inf_filter`: True
|
| 403 |
+
- `save_safetensors`: True
|
| 404 |
+
- `save_on_each_node`: False
|
| 405 |
+
- `save_only_model`: False
|
| 406 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 407 |
+
- `use_cpu`: False
|
| 408 |
+
- `seed`: 42
|
| 409 |
+
- `data_seed`: None
|
| 410 |
+
- `jit_mode_eval`: False
|
| 411 |
+
- `bf16`: True
|
| 412 |
+
- `fp16`: False
|
| 413 |
+
- `half_precision_backend`: None
|
| 414 |
+
- `bf16_full_eval`: False
|
| 415 |
+
- `fp16_full_eval`: False
|
| 416 |
+
- `tf32`: None
|
| 417 |
+
- `local_rank`: 0
|
| 418 |
+
- `ddp_backend`: None
|
| 419 |
+
- `tpu_num_cores`: None
|
| 420 |
+
- `debug`: []
|
| 421 |
+
- `dataloader_drop_last`: False
|
| 422 |
+
- `dataloader_num_workers`: 0
|
| 423 |
+
- `dataloader_prefetch_factor`: None
|
| 424 |
+
- `past_index`: -1
|
| 425 |
+
- `disable_tqdm`: False
|
| 426 |
+
- `remove_unused_columns`: True
|
| 427 |
+
- `label_names`: None
|
| 428 |
+
- `load_best_model_at_end`: False
|
| 429 |
+
- `ignore_data_skip`: False
|
| 430 |
+
- `fsdp`: []
|
| 431 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 432 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 433 |
+
- `parallelism_config`: None
|
| 434 |
+
- `deepspeed`: None
|
| 435 |
+
- `label_smoothing_factor`: 0.0
|
| 436 |
+
- `optim`: adamw_torch_fused
|
| 437 |
+
- `optim_args`: None
|
| 438 |
+
- `group_by_length`: False
|
| 439 |
+
- `length_column_name`: length
|
| 440 |
+
- `ddp_find_unused_parameters`: None
|
| 441 |
+
- `ddp_bucket_cap_mb`: None
|
| 442 |
+
- `ddp_broadcast_buffers`: False
|
| 443 |
+
- `dataloader_pin_memory`: True
|
| 444 |
+
- `dataloader_persistent_workers`: False
|
| 445 |
+
- `skip_memory_metrics`: True
|
| 446 |
+
- `use_legacy_prediction_loop`: False
|
| 447 |
+
- `push_to_hub`: False
|
| 448 |
+
- `resume_from_checkpoint`: None
|
| 449 |
+
- `hub_model_id`: None
|
| 450 |
+
- `hub_strategy`: every_save
|
| 451 |
+
- `hub_private_repo`: None
|
| 452 |
+
- `hub_always_push`: False
|
| 453 |
+
- `hub_revision`: None
|
| 454 |
+
- `gradient_checkpointing`: False
|
| 455 |
+
- `gradient_checkpointing_kwargs`: None
|
| 456 |
+
- `include_for_metrics`: []
|
| 457 |
+
- `eval_do_concat_batches`: True
|
| 458 |
+
- `mp_parameters`:
|
| 459 |
+
- `auto_find_batch_size`: False
|
| 460 |
+
- `full_determinism`: False
|
| 461 |
+
- `ray_scope`: last
|
| 462 |
+
- `ddp_timeout`: 1800
|
| 463 |
+
- `torch_compile`: False
|
| 464 |
+
- `torch_compile_backend`: None
|
| 465 |
+
- `torch_compile_mode`: None
|
| 466 |
+
- `include_tokens_per_second`: False
|
| 467 |
+
- `include_num_input_tokens_seen`: no
|
| 468 |
+
- `neftune_noise_alpha`: None
|
| 469 |
+
- `optim_target_modules`: None
|
| 470 |
+
- `batch_eval_metrics`: False
|
| 471 |
+
- `eval_on_start`: False
|
| 472 |
+
- `use_liger_kernel`: False
|
| 473 |
+
- `liger_kernel_config`: None
|
| 474 |
+
- `eval_use_gather_object`: False
|
| 475 |
+
- `average_tokens_across_devices`: True
|
| 476 |
+
- `prompts`: None
|
| 477 |
+
- `batch_sampler`: no_duplicates
|
| 478 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 479 |
+
- `router_mapping`: {}
|
| 480 |
+
- `learning_rate_mapping`: {}
|
| 481 |
+
|
| 482 |
+
</details>
|
| 483 |
+
|
| 484 |
+
### Training Logs
|
| 485 |
+
| Epoch | Step | Training Loss | Validation Loss | coco-eval_cosine_ndcg@10 | coco-test_cosine_ndcg@10 |
|
| 486 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|
|
| 487 |
+
| -1 | -1 | - | - | 0.2242 | - |
|
| 488 |
+
| 0.0112 | 7 | 2.6924 | - | - | - |
|
| 489 |
+
| 0.0224 | 14 | 3.1613 | - | - | - |
|
| 490 |
+
| 0.0336 | 21 | 3.1706 | - | - | - |
|
| 491 |
+
| 0.0448 | 28 | 2.5607 | - | - | - |
|
| 492 |
+
| 0.056 | 35 | 2.5325 | - | - | - |
|
| 493 |
+
| 0.0672 | 42 | 2.353 | - | - | - |
|
| 494 |
+
| 0.0784 | 49 | 1.5503 | - | - | - |
|
| 495 |
+
| 0.0896 | 56 | 1.5149 | - | - | - |
|
| 496 |
+
| 0.1008 | 63 | 1.404 | 0.8206 | 0.7171 | - |
|
| 497 |
+
| 0.112 | 70 | 1.0411 | - | - | - |
|
| 498 |
+
| 0.1232 | 77 | 0.748 | - | - | - |
|
| 499 |
+
| 0.1344 | 84 | 0.5821 | - | - | - |
|
| 500 |
+
| 0.1456 | 91 | 0.3756 | - | - | - |
|
| 501 |
+
| 0.1568 | 98 | 0.7135 | - | - | - |
|
| 502 |
+
| 0.168 | 105 | 0.5058 | - | - | - |
|
| 503 |
+
| 0.1792 | 112 | 0.4432 | - | - | - |
|
| 504 |
+
| 0.1904 | 119 | 0.428 | - | - | - |
|
| 505 |
+
| 0.2016 | 126 | 0.3416 | 0.3792 | 0.8132 | - |
|
| 506 |
+
| 0.2128 | 133 | 0.2572 | - | - | - |
|
| 507 |
+
| 0.224 | 140 | 0.1803 | - | - | - |
|
| 508 |
+
| 0.2352 | 147 | 0.2389 | - | - | - |
|
| 509 |
+
| 0.2464 | 154 | 0.3825 | - | - | - |
|
| 510 |
+
| 0.2576 | 161 | 0.2629 | - | - | - |
|
| 511 |
+
| 0.2688 | 168 | 0.4079 | - | - | - |
|
| 512 |
+
| 0.28 | 175 | 0.2106 | - | - | - |
|
| 513 |
+
| 0.2912 | 182 | 0.2089 | - | - | - |
|
| 514 |
+
| 0.3024 | 189 | 0.2215 | 0.2772 | 0.8425 | - |
|
| 515 |
+
| 0.3136 | 196 | 0.2142 | - | - | - |
|
| 516 |
+
| 0.3248 | 203 | 0.2895 | - | - | - |
|
| 517 |
+
| 0.336 | 210 | 0.2901 | - | - | - |
|
| 518 |
+
| 0.3472 | 217 | 0.2332 | - | - | - |
|
| 519 |
+
| 0.3584 | 224 | 0.2538 | - | - | - |
|
| 520 |
+
| 0.3696 | 231 | 0.1969 | - | - | - |
|
| 521 |
+
| 0.3808 | 238 | 0.2055 | - | - | - |
|
| 522 |
+
| 0.392 | 245 | 0.2135 | - | - | - |
|
| 523 |
+
| 0.4032 | 252 | 0.2177 | 0.2362 | 0.8513 | - |
|
| 524 |
+
| 0.4144 | 259 | 0.2228 | - | - | - |
|
| 525 |
+
| 0.4256 | 266 | 0.3378 | - | - | - |
|
| 526 |
+
| 0.4368 | 273 | 0.1516 | - | - | - |
|
| 527 |
+
| 0.448 | 280 | 0.1068 | - | - | - |
|
| 528 |
+
| 0.4592 | 287 | 0.1817 | - | - | - |
|
| 529 |
+
| 0.4704 | 294 | 0.1007 | - | - | - |
|
| 530 |
+
| 0.4816 | 301 | 0.1488 | - | - | - |
|
| 531 |
+
| 0.4928 | 308 | 0.1713 | - | - | - |
|
| 532 |
+
| 0.504 | 315 | 0.1963 | 0.2124 | 0.8633 | - |
|
| 533 |
+
| 0.5152 | 322 | 0.2033 | - | - | - |
|
| 534 |
+
| 0.5264 | 329 | 0.1321 | - | - | - |
|
| 535 |
+
| 0.5376 | 336 | 0.1642 | - | - | - |
|
| 536 |
+
| 0.5488 | 343 | 0.1352 | - | - | - |
|
| 537 |
+
| 0.56 | 350 | 0.1918 | - | - | - |
|
| 538 |
+
| 0.5712 | 357 | 0.1315 | - | - | - |
|
| 539 |
+
| 0.5824 | 364 | 0.2275 | - | - | - |
|
| 540 |
+
| 0.5936 | 371 | 0.0844 | - | - | - |
|
| 541 |
+
| 0.6048 | 378 | 0.0854 | 0.2052 | 0.8689 | - |
|
| 542 |
+
| 0.616 | 385 | 0.1572 | - | - | - |
|
| 543 |
+
| 0.6272 | 392 | 0.1111 | - | - | - |
|
| 544 |
+
| 0.6384 | 399 | 0.1958 | - | - | - |
|
| 545 |
+
| 0.6496 | 406 | 0.0896 | - | - | - |
|
| 546 |
+
| 0.6608 | 413 | 0.1532 | - | - | - |
|
| 547 |
+
| 0.672 | 420 | 0.1387 | - | - | - |
|
| 548 |
+
| 0.6832 | 427 | 0.0942 | - | - | - |
|
| 549 |
+
| 0.6944 | 434 | 0.1696 | - | - | - |
|
| 550 |
+
| 0.7056 | 441 | 0.1501 | 0.1898 | 0.8742 | - |
|
| 551 |
+
| 0.7168 | 448 | 0.143 | - | - | - |
|
| 552 |
+
| 0.728 | 455 | 0.1221 | - | - | - |
|
| 553 |
+
| 0.7392 | 462 | 0.1082 | - | - | - |
|
| 554 |
+
| 0.7504 | 469 | 0.1601 | - | - | - |
|
| 555 |
+
| 0.7616 | 476 | 0.1504 | - | - | - |
|
| 556 |
+
| 0.7728 | 483 | 0.1513 | - | - | - |
|
| 557 |
+
| 0.784 | 490 | 0.1108 | - | - | - |
|
| 558 |
+
| 0.7952 | 497 | 0.1086 | - | - | - |
|
| 559 |
+
| 0.8064 | 504 | 0.11 | 0.1689 | 0.8782 | - |
|
| 560 |
+
| 0.8176 | 511 | 0.1562 | - | - | - |
|
| 561 |
+
| 0.8288 | 518 | 0.1291 | - | - | - |
|
| 562 |
+
| 0.84 | 525 | 0.0687 | - | - | - |
|
| 563 |
+
| 0.8512 | 532 | 0.0966 | - | - | - |
|
| 564 |
+
| 0.8624 | 539 | 0.0977 | - | - | - |
|
| 565 |
+
| 0.8736 | 546 | 0.089 | - | - | - |
|
| 566 |
+
| 0.8848 | 553 | 0.0697 | - | - | - |
|
| 567 |
+
| 0.896 | 560 | 0.0561 | - | - | - |
|
| 568 |
+
| 0.9072 | 567 | 0.1078 | 0.1779 | 0.8860 | - |
|
| 569 |
+
| 0.9184 | 574 | 0.1425 | - | - | - |
|
| 570 |
+
| 0.9296 | 581 | 0.1273 | - | - | - |
|
| 571 |
+
| 0.9408 | 588 | 0.1215 | - | - | - |
|
| 572 |
+
| 0.952 | 595 | 0.1311 | - | - | - |
|
| 573 |
+
| 0.9632 | 602 | 0.0512 | - | - | - |
|
| 574 |
+
| 0.9744 | 609 | 0.0735 | - | - | - |
|
| 575 |
+
| 0.9856 | 616 | 0.1125 | - | - | - |
|
| 576 |
+
| 0.9968 | 623 | 0.1359 | - | - | - |
|
| 577 |
+
| -1 | -1 | - | - | - | 0.8849 |
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
### Environmental Impact
|
| 581 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
| 582 |
+
- **Energy Consumed**: 0.054 kWh
|
| 583 |
+
- **Carbon Emitted**: 0.015 kg of CO2
|
| 584 |
+
- **Hours Used**: 0.169 hours
|
| 585 |
+
|
| 586 |
+
### Training Hardware
|
| 587 |
+
- **On Cloud**: No
|
| 588 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
| 589 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 590 |
+
- **RAM Size**: 31.78 GB
|
| 591 |
+
|
| 592 |
+
### Framework Versions
|
| 593 |
+
- Python: 3.11.6
|
| 594 |
+
- Sentence Transformers: 5.2.0.dev0
|
| 595 |
+
- Transformers: 4.57.0.dev0
|
| 596 |
+
- PyTorch: 2.8.0+cu128
|
| 597 |
+
- Accelerate: 1.6.0
|
| 598 |
+
- Datasets: 3.6.0
|
| 599 |
+
- Tokenizers: 0.22.1
|
| 600 |
+
|
| 601 |
+
## Citation
|
| 602 |
+
|
| 603 |
+
### BibTeX
|
| 604 |
+
|
| 605 |
+
#### Sentence Transformers
|
| 606 |
+
```bibtex
|
| 607 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 608 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 609 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 610 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 611 |
+
month = "11",
|
| 612 |
+
year = "2019",
|
| 613 |
+
publisher = "Association for Computational Linguistics",
|
| 614 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 615 |
+
}
|
| 616 |
+
```
|
| 617 |
+
|
| 618 |
+
#### MultipleNegativesRankingLoss
|
| 619 |
+
```bibtex
|
| 620 |
+
@misc{henderson2017efficient,
|
| 621 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 622 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 623 |
+
year={2017},
|
| 624 |
+
eprint={1705.00652},
|
| 625 |
+
archivePrefix={arXiv},
|
| 626 |
+
primaryClass={cs.CL}
|
| 627 |
+
}
|
| 628 |
+
```
|
| 629 |
+
|
| 630 |
+
<!--
|
| 631 |
+
## Glossary
|
| 632 |
+
|
| 633 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 634 |
+
-->
|
| 635 |
+
|
| 636 |
+
<!--
|
| 637 |
+
## Model Card Authors
|
| 638 |
+
|
| 639 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 640 |
+
-->
|
| 641 |
+
|
| 642 |
+
<!--
|
| 643 |
+
## Model Card Contact
|
| 644 |
+
|
| 645 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 646 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"SiglipModel"
|
| 4 |
+
],
|
| 5 |
+
"dtype": "float32",
|
| 6 |
+
"initializer_factor": 1.0,
|
| 7 |
+
"model_type": "siglip",
|
| 8 |
+
"text_config": {
|
| 9 |
+
"attention_dropout": 0.0,
|
| 10 |
+
"dtype": "float32",
|
| 11 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-06,
|
| 15 |
+
"max_position_embeddings": 64,
|
| 16 |
+
"model_type": "siglip_text_model",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"projection_size": 768,
|
| 20 |
+
"vocab_size": 32000
|
| 21 |
+
},
|
| 22 |
+
"transformers_version": "4.57.0.dev0",
|
| 23 |
+
"vision_config": {
|
| 24 |
+
"attention_dropout": 0.0,
|
| 25 |
+
"dtype": "float32",
|
| 26 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 27 |
+
"hidden_size": 768,
|
| 28 |
+
"image_size": 512,
|
| 29 |
+
"intermediate_size": 3072,
|
| 30 |
+
"layer_norm_eps": 1e-06,
|
| 31 |
+
"model_type": "siglip_vision_model",
|
| 32 |
+
"num_attention_heads": 12,
|
| 33 |
+
"num_channels": 3,
|
| 34 |
+
"num_hidden_layers": 12,
|
| 35 |
+
"patch_size": 16
|
| 36 |
+
}
|
| 37 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.2.0.dev0",
|
| 5 |
+
"transformers": "4.57.0.dev0",
|
| 6 |
+
"pytorch": "2.8.0+cu128"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecf495ea7c4acb8a9b426f035ab89bf5d0fb9717d5c9b268871187b988f6bf93
|
| 3 |
+
size 815215944
|
modules.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
}
|
| 8 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformer_task": "feature-extraction",
|
| 3 |
+
"modality_config": {
|
| 4 |
+
"text": {
|
| 5 |
+
"method": "get_text_features",
|
| 6 |
+
"method_output_name": null
|
| 7 |
+
},
|
| 8 |
+
"image": {
|
| 9 |
+
"method": "get_image_features",
|
| 10 |
+
"method_output_name": null
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"module_output_name": "sentence_embedding"
|
| 14 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "</s>",
|
| 4 |
+
"lstrip": true,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": true,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": true,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": true,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": true,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": true,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
spiece.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e5036bed065526c3c212dfbe288752391797c4bb1a284aa18c9a0b23fcaf8ec
|
| 3 |
+
size 798330
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"1": {
|
| 4 |
+
"content": "</s>",
|
| 5 |
+
"lstrip": true,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": true,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"2": {
|
| 12 |
+
"content": "<unk>",
|
| 13 |
+
"lstrip": true,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": true,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
"additional_special_tokens": [],
|
| 21 |
+
"clean_up_tokenization_spaces": true,
|
| 22 |
+
"do_convert_rgb": true,
|
| 23 |
+
"do_lower_case": true,
|
| 24 |
+
"eos_token": "</s>",
|
| 25 |
+
"extra_special_tokens": {},
|
| 26 |
+
"model_input_names": [
|
| 27 |
+
"input_ids"
|
| 28 |
+
],
|
| 29 |
+
"model_max_length": 64,
|
| 30 |
+
"pad_token": "</s>",
|
| 31 |
+
"processor_class": "SiglipProcessor",
|
| 32 |
+
"sp_model_kwargs": {},
|
| 33 |
+
"tokenizer_class": "SiglipTokenizer",
|
| 34 |
+
"unk_token": "<unk>"
|
| 35 |
+
}
|