tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
f6111f0 verified
|
raw
history blame
21.6 kB
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - loss:GISTEmbedLoss
base_model: distilbert/distilroberta-base
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: A woman sings.
    sentences:
      - The woman is singing.
      - A story book is open.
      - The men have blonde hair.
  - source_sentence: a baby smiling
    sentences:
      - A baby is unhappy.
      - a fireman on a ladder
      - Five men stand on chairs.
  - source_sentence: The boy scowls
    sentences:
      - A boy is outdoors.
      - a man is wearing blue
      - Two women are sleeping.
  - source_sentence: There's a dock
    sentences:
      - A boat docked on a river.
      - He is playing a song.
      - The baby is in the crib.
  - source_sentence: an eagle flies
    sentences:
      - A bird flying.
      - The woman is outside.
      - The people are sleeping.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 1.6492452883656235
  energy_consumed: 0.004242955498982829
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.021
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on distilbert/distilroberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.7695103533338594
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8046160770503588
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7673329964610834
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7756781613323356
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7718833134570839
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7784941712509205
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.22148844887336572
            name: Pearson Dot
          - type: spearman_dot
            value: 0.2092109979282621
            name: Spearman Dot
          - type: pearson_max
            value: 0.7718833134570839
            name: Pearson Max
          - type: spearman_max
            value: 0.8046160770503588
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.7270251484636511
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7463390012771995
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7295418823252019
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7198414342133578
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7347198114628469
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.724025904164009
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.19404927455056548
            name: Pearson Dot
          - type: spearman_dot
            value: 0.1791431711812991
            name: Spearman Dot
          - type: pearson_max
            value: 0.7347198114628469
            name: Pearson Max
          - type: spearman_max
            value: 0.7463390012771995
            name: Spearman Max

SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-v3")
# Run inference
sentences = [
    'an eagle flies',
    'A bird flying.',
    'The woman is outside.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7695
spearman_cosine 0.8046
pearson_manhattan 0.7673
spearman_manhattan 0.7757
pearson_euclidean 0.7719
spearman_euclidean 0.7785
pearson_dot 0.2215
spearman_dot 0.2092
pearson_max 0.7719
spearman_max 0.8046

Semantic Similarity

Metric Value
pearson_cosine 0.727
spearman_cosine 0.7463
pearson_manhattan 0.7295
spearman_manhattan 0.7198
pearson_euclidean 0.7347
spearman_euclidean 0.724
pearson_dot 0.194
spearman_dot 0.1791
pearson_max 0.7347
spearman_max 0.7463

Training Details

Training Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli at cc6c526
  • Size: 10,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 10.38 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 12.8 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.4 tokens
    • max: 50 tokens
  • Samples:
    anchor positive negative
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. A person is at a diner, ordering an omelette.
    Children smiling and waving at camera There are children present The kids are frowning
    A boy is jumping on skateboard in the middle of a red bridge. The boy does a skateboarding trick. The boy skates down the sidewalk.
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01}
    

Evaluation Dataset

sentence-transformers/all-nli

  • Dataset: sentence-transformers/all-nli at cc6c526
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 18.02 tokens
    • max: 66 tokens
    • min: 5 tokens
    • mean: 9.81 tokens
    • max: 29 tokens
    • min: 5 tokens
    • mean: 10.37 tokens
    • max: 29 tokens
  • Samples:
    anchor positive negative
    Two women are embracing while holding to go packages. Two woman are holding packages. The men are fighting outside a deli.
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. Two kids in numbered jerseys wash their hands. Two kids in jackets walk to school.
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles A man selling donuts to a customer. A woman drinks her coffee in a small cafe.
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: False
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step loss sts-dev_spearman_cosine sts-test_spearman_cosine
0 0 - 0.6375 -
0.1266 10 2.5172 0.7944 -
0.2532 20 1.8059 0.8061 -
0.3797 30 1.6805 0.8163 -
0.5063 40 1.8153 0.8167 -
0.6329 50 1.7177 0.8121 -
0.7595 60 1.8622 0.8031 -
0.8861 70 1.8056 0.8046 -
1.0 79 - - 0.7463

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.004 kWh
  • Carbon Emitted: 0.002 kg of CO2
  • Hours Used: 0.021 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.0.0.dev0
  • Transformers: 4.41.0.dev0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, 
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}