tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
93683ef verified
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MSELoss
base_model: nreimers/TinyBERT_L-4_H-312_v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- negative_mse
widget:
- source_sentence: A woman at home.
sentences:
- The woman is inside.
- The woman is performing for an audience.
- The two men are freinds
- source_sentence: boys play football
sentences:
- Rival college football players are playing a football game.
- A man looks at his watch at a bus stop.
- A woman walking on an old bridge near a mountain.
- source_sentence: Nobody has a pot
sentences:
- Nobody has a suit
- A woman riding a bicycle on the street.
- The front is decorated with Ethiopian themes and motifs.
- source_sentence: A dog plays ball.
sentences:
- A dog with a ball.
- A man looking into a microscope in a lab
- Children go past their parents.
- source_sentence: A person standing
sentences:
- There is a person standing outside
- A young man plays a racing video game.
- Two children playing on the floor with toy trains.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 3.457859864142588
energy_consumed: 0.00889591477312334
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.054
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8077673131159315
name: Pearson Cosine
- type: spearman_cosine
value: 0.8208863013753134
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8225516575982812
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8203236078973807
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8215663439432439
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8202318953605339
name: Spearman Euclidean
- type: pearson_dot
value: 0.7901487535994149
name: Pearson Dot
- type: spearman_dot
value: 0.7914362691291718
name: Spearman Dot
- type: pearson_max
value: 0.8225516575982812
name: Pearson Max
- type: spearman_max
value: 0.8208863013753134
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: Unknown
type: unknown
metrics:
- type: negative_mse
value: -50.125449895858765
name: Negative Mse
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.7516961775809978
name: Pearson Cosine
- type: spearman_cosine
value: 0.7558402072520215
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7762734499549059
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.75965556867712
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7705568379382428
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7553604477247078
name: Spearman Euclidean
- type: pearson_dot
value: 0.7306801501272192
name: Pearson Dot
- type: spearman_dot
value: 0.7097993872384684
name: Spearman Dot
- type: pearson_max
value: 0.7762734499549059
name: Pearson Max
- type: spearman_max
value: 0.75965556867712
name: Spearman Max
---
# SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 312 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2")
# Run inference
sentences = [
'A person standing',
'There is a person standing outside',
'A young man plays a racing video game.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8078 |
| **spearman_cosine** | **0.8209** |
| pearson_manhattan | 0.8226 |
| spearman_manhattan | 0.8203 |
| pearson_euclidean | 0.8216 |
| spearman_euclidean | 0.8202 |
| pearson_dot | 0.7901 |
| spearman_dot | 0.7914 |
| pearson_max | 0.8226 |
| spearman_max | 0.8209 |
#### Knowledge Distillation
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
| Metric | Value |
|:-----------------|:-------------|
| **negative_mse** | **-50.1254** |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7517 |
| **spearman_cosine** | **0.7558** |
| pearson_manhattan | 0.7763 |
| spearman_manhattan | 0.7597 |
| pearson_euclidean | 0.7706 |
| spearman_euclidean | 0.7554 |
| pearson_dot | 0.7307 |
| spearman_dot | 0.7098 |
| pearson_max | 0.7763 |
| spearman_max | 0.7597 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### sentence-transformers/wikipedia-en-sentences
* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 200,000 training samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
| sentence | label |
|:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]</code> |
| <code>Children smiling and waving at camera</code> | <code>[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
### Evaluation Dataset
#### sentence-transformers/wikipedia-en-sentences
* Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
* Size: 10,000 evaluation samples
* Columns: <code>sentence</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence | label |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
| type | string | list |
| details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
* Samples:
| sentence | label |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...]</code> |
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:--------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
| 0.032 | 100 | 0.8847 | - | - | - | - |
| 0.064 | 200 | 0.8136 | - | - | - | - |
| 0.096 | 300 | 0.697 | - | - | - | - |
| 0.128 | 400 | 0.6128 | - | - | - | - |
| 0.16 | 500 | 0.5634 | 0.6324 | -63.2356 | 0.7564 | - |
| 0.192 | 600 | 0.5294 | - | - | - | - |
| 0.224 | 700 | 0.5035 | - | - | - | - |
| 0.256 | 800 | 0.4861 | - | - | - | - |
| 0.288 | 900 | 0.4668 | - | - | - | - |
| 0.32 | 1000 | 0.4515 | 0.5673 | -56.7263 | 0.7965 | - |
| 0.352 | 1100 | 0.4376 | - | - | - | - |
| 0.384 | 1200 | 0.4274 | - | - | - | - |
| 0.416 | 1300 | 0.4178 | - | - | - | - |
| 0.448 | 1400 | 0.4098 | - | - | - | - |
| 0.48 | 1500 | 0.4053 | 0.5354 | -53.5381 | 0.8091 | - |
| 0.512 | 1600 | 0.3934 | - | - | - | - |
| 0.544 | 1700 | 0.391 | - | - | - | - |
| 0.576 | 1800 | 0.3848 | - | - | - | - |
| 0.608 | 1900 | 0.3785 | - | - | - | - |
| 0.64 | 2000 | 0.3737 | 0.5168 | -51.6829 | 0.8159 | - |
| 0.672 | 2100 | 0.3716 | - | - | - | - |
| 0.704 | 2200 | 0.3695 | - | - | - | - |
| 0.736 | 2300 | 0.3666 | - | - | - | - |
| 0.768 | 2400 | 0.3616 | - | - | - | - |
| 0.8 | 2500 | 0.358 | 0.5067 | -50.6687 | 0.8189 | - |
| 0.832 | 2600 | 0.3551 | - | - | - | - |
| 0.864 | 2700 | 0.3544 | - | - | - | - |
| 0.896 | 2800 | 0.3524 | - | - | - | - |
| 0.928 | 2900 | 0.3524 | - | - | - | - |
| **0.96** | **3000** | **0.3529** | **0.5013** | **-50.1254** | **0.8209** | **-** |
| 0.992 | 3100 | 0.3496 | - | - | - | - |
| 1.0 | 3125 | - | - | - | - | 0.7558 |
* The bold row denotes the saved checkpoint.
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.009 kWh
- **Carbon Emitted**: 0.003 kg of CO2
- **Hours Used**: 0.054 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MSELoss
```bibtex
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->