Taishi-N324
commited on
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ja
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
license: llama2
|
8 |
+
model_type: llama
|
9 |
+
---
|
10 |
+
|
11 |
+
# Swallow
|
12 |
+
|
13 |
+
Our Swallow model has undergone continuous pre-training from the Llama 2 family, primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT).
|
14 |
+
Links to other models can be found in the index.
|
15 |
+
|
16 |
+
## Swallow Model Index
|
17 |
+
|Model|Swallow-hf|Swallow-instruct-hf|
|
18 |
+
|---|---|---|
|
19 |
+
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|
|
20 |
+
|13B| [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf)|
|
21 |
+
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf)|
|
22 |
+
|
23 |
+
## Swallow Model Index NVE (No Vocabulary Expansion)
|
24 |
+
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf|
|
25 |
+
|---|---|---|
|
26 |
+
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf)|
|
27 |
+
|13B| Coming Soon | Coming Soon |
|
28 |
+
|70B| [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)|
|
29 |
+
|
30 |
+
We released the 7B and 70B models without vocabulary expansion on January 26th, 2024.
|
31 |
+
The 13B model will be released soon.
|
32 |
+
|
33 |
+
|
34 |
+
![logo](./logo.png)
|
35 |
+
|
36 |
+
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
|
37 |
+
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our paper (preprint coming soon) for more details!
|
38 |
+
|
39 |
+
|
40 |
+
## Model Details
|
41 |
+
|
42 |
+
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
|
43 |
+
* **Language(s)**: Japanese English
|
44 |
+
* **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2)
|
45 |
+
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
|
46 |
+
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
47 |
+
|
48 |
+
## Base Model Performance
|
49 |
+
|
50 |
+
### Japanese version
|
51 |
+
|
52 |
+
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|
|
53 |
+
|---|---|---|---|---|---|---|---|---|---|
|
54 |
+
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|
|
55 |
+
|Llama 2|7B|0.3852|0.4240|0.3410|0.7917|0.1905|0.0760|0.1783|0.1738|
|
56 |
+
|Swallow|7B|0.4808|0.5078|0.5968|0.8573|0.1830|0.1240|0.2510|0.1511|
|
57 |
+
|Llama 2|13B|0.6997|0.4415|0.4170|0.8533|0.2139|0.1320|0.2146|0.1982|
|
58 |
+
|Swallow|13B|0.7837|0.5063|0.6398|0.9005|0.2168|0.2040|0.2720|0.1771|
|
59 |
+
|Llama 2|70B|0.8686|0.4656|0.5256|0.9080|**0.2361**|0.3560|0.2643|**0.2398**|
|
60 |
+
|Swallow|70B|**0.9348**|**0.6290**|**0.6960**|**0.9176**|0.2266|**0.4840**|**0.3043**|0.2298|
|
61 |
+
|
62 |
+
## Usage
|
63 |
+
|
64 |
+
First install additional dependencies in [requirements.txt](./requirements.txt):
|
65 |
+
|
66 |
+
```sh
|
67 |
+
pip install -r requirements.txt
|
68 |
+
```
|
69 |
+
|
70 |
+
### Use the instruct model
|
71 |
+
|
72 |
+
```python
|
73 |
+
import torch
|
74 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
75 |
+
|
76 |
+
model_name = "tokyotech-llm/Swallow-7b-instruct-hf"
|
77 |
+
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
80 |
+
|
81 |
+
|
82 |
+
PROMPT_DICT = {
|
83 |
+
"prompt_input": (
|
84 |
+
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
|
85 |
+
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
86 |
+
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
|
87 |
+
|
88 |
+
),
|
89 |
+
"prompt_no_input": (
|
90 |
+
"以下に、あるタスクを説明する指示があります。"
|
91 |
+
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
92 |
+
"### 指示:\n{instruction}\n\n### 応答:"
|
93 |
+
),
|
94 |
+
}
|
95 |
+
|
96 |
+
def create_prompt(instruction, input=None):
|
97 |
+
"""
|
98 |
+
Generates a prompt based on the given instruction and an optional input.
|
99 |
+
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
|
100 |
+
If no input is provided, it uses the 'prompt_no_input' template.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
instruction (str): The instruction describing the task.
|
104 |
+
input (str, optional): Additional input providing context for the task. Default is None.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
str: The generated prompt.
|
108 |
+
"""
|
109 |
+
if input:
|
110 |
+
# Use the 'prompt_input' template when additional input is provided
|
111 |
+
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
|
112 |
+
else:
|
113 |
+
# Use the 'prompt_no_input' template when no additional input is provided
|
114 |
+
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
115 |
+
|
116 |
+
# Example usage
|
117 |
+
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
|
118 |
+
input_example = "東京工業大学の主なキャンパスについて教えてください"
|
119 |
+
prompt = create_prompt(instruction_example, input_example)
|
120 |
+
|
121 |
+
input_ids = tokenizer.encode(
|
122 |
+
prompt,
|
123 |
+
add_special_tokens=False,
|
124 |
+
return_tensors="pt"
|
125 |
+
)
|
126 |
+
|
127 |
+
tokens = model.generate(
|
128 |
+
input_ids.to(device=model.device),
|
129 |
+
max_new_tokens=128,
|
130 |
+
temperature=0.99,
|
131 |
+
top_p=0.95,
|
132 |
+
do_sample=True,
|
133 |
+
)
|
134 |
+
|
135 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
136 |
+
print(out)
|
137 |
+
|
138 |
+
```
|
139 |
+
|
140 |
+
### Use the base model
|
141 |
+
|
142 |
+
```python
|
143 |
+
import torch
|
144 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
145 |
+
|
146 |
+
model_name = "tokyotech-llm/Swallow-7b-hf"
|
147 |
+
|
148 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
149 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
150 |
+
|
151 |
+
prompt = "東京工業大学の主なキャンパスは、"
|
152 |
+
input_ids = tokenizer.encode(
|
153 |
+
prompt,
|
154 |
+
add_special_tokens=False,
|
155 |
+
return_tensors="pt"
|
156 |
+
)
|
157 |
+
tokens = model.generate(
|
158 |
+
input_ids.to(device=model.device),
|
159 |
+
max_new_tokens=128,
|
160 |
+
temperature=0.99,
|
161 |
+
top_p=0.95,
|
162 |
+
do_sample=True,
|
163 |
+
)
|
164 |
+
|
165 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
166 |
+
print(out)
|
167 |
+
```
|
168 |
+
|
169 |
+
## Training Datasets
|
170 |
+
|
171 |
+
### Continual Pre-Training
|
172 |
+
The following datasets were used for continual pre-training.
|
173 |
+
|
174 |
+
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
175 |
+
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
176 |
+
- Swallow Corpus
|
177 |
+
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
178 |
+
|
179 |
+
|
180 |
+
### Instruction Tuning
|
181 |
+
|
182 |
+
The following datasets were used for the instruction tuning.
|
183 |
+
|
184 |
+
- [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
|
185 |
+
- [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
|
186 |
+
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
|
187 |
+
|
188 |
+
## Risks and Limitations
|
189 |
+
|
190 |
+
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
|
191 |
+
|
192 |
+
## Acknowledgements
|
193 |
+
|
194 |
+
We thank Meta Research for releasing Llama 2 under an open license for others to build on.
|
195 |
+
|
196 |
+
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
|
197 |
+
|
198 |
+
## License
|
199 |
+
|
200 |
+
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
|
201 |
+
|
202 |
+
## Authors
|
203 |
+
|
204 |
+
Here are the team members:
|
205 |
+
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
|
206 |
+
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
|
207 |
+
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
|
208 |
+
- [Hiroki Iida](https://meshidenn.github.io/)
|
209 |
+
- [Mengsay Loem](https://loem-ms.github.io/)
|
210 |
+
- [Shota Hirai](https://huggingface.co/Kotemo428)
|
211 |
+
- [Kakeru Hattori](https://aya-se.vercel.app/)
|
212 |
+
- [Masanari Ohi](https://twitter.com/stjohn2007)
|
213 |
+
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
|
214 |
+
- [Rio Yokota](https://twitter.com/rioyokota)
|
215 |
+
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
|
216 |
+
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
|