full-training / README.md
toilaluan's picture
Trained for 4 epochs and 45 steps.
5f2b425 verified
metadata
license: creativeml-openrail-m
base_model: toilaluan/turbox
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - full
inference: true

full-training

This is a full rank finetune derived from toilaluan/turbox.

The main validation prompt used during training was:

ethnographic photography of teddy bear at a picnic

Validation settings

  • CFG: 7.5
  • CFG Rescale: 0.0
  • Steps: 30
  • Sampler: None
  • Seed: 42
  • Resolution: 1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 4
  • Training steps: 45
  • Learning rate: 8e-07
  • Effective batch size: 40
    • Micro-batch size: 10
    • Gradient accumulation steps: 4
    • Number of GPUs: 1
  • Prediction type: epsilon
  • Rescaled betas zero SNR: False
  • Optimizer: AdamW, stochastic bf16
  • Precision: Pure BF16
  • Xformers: Not used

Datasets

xxx123

  • Repeats: 0
  • Total number of images: 360
  • Total number of aspect buckets: 1
  • Resolution: 1.0 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'full-training'
pipeline = DiffusionPipeline.from_pretrained(model_id)

prompt = "ethnographic photography of teddy bear at a picnic"
negative_prompt = "blurry, cropped, ugly"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='blurry, cropped, ugly',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=7.5,
    guidance_rescale=0.0,
).images[0]
image.save("output.png", format="PNG")