|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .cache import InferenceParams, RecurrentInferenceParams |
|
from .engine import HyenaInferenceEngine |
|
from .layers import ParallelGatedMLP, RMSNorm, VocabParallelEmbedding |
|
from .utils import column_split, print_rank_0 |
|
|
|
try: |
|
from flash_attn.modules.mha import MHA |
|
except ImportError: |
|
"flash_attn not installed" |
|
|
|
try: |
|
from .positional_embeddings import swap_mha_rope |
|
except ImportError: |
|
"could not import swap_mha_rope from positional_embeddings.py" |
|
|
|
|
|
from .tokenizer import ByteTokenizer |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
def __init__(self, config, layer_idx) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.pre_norm, self.post_norm = RMSNorm(config), RMSNorm(config) |
|
self.layer_idx = layer_idx |
|
self.proj_groups = config.get("proj_groups", 1) |
|
dtype = config.get("attn_block_dtype", torch.bfloat16) |
|
mlp_dtype = config.get("mlp_dtype", torch.bfloat16) |
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size_per_attention_head = config.hidden_size // config.num_attention_heads |
|
|
|
self.counter = 0 |
|
self.inner_mha_cls = MHA( |
|
embed_dim=config.hidden_size, |
|
num_heads=config.num_attention_heads, |
|
num_heads_kv=config.num_attention_heads // self.proj_groups, |
|
rotary_emb_dim=config.hidden_size // config.num_attention_heads, |
|
qkv_proj_bias=config.get("qkv_proj_bias", True), |
|
rotary_emb_base=config.get("rotary_emb_base", 10000), |
|
causal=True, |
|
layer_idx=layer_idx, |
|
out_proj_bias=config.get("mha_out_proj_bias", True), |
|
use_flash_attn=self.config.use_flash_attn, |
|
).to(dtype=dtype) |
|
|
|
|
|
if config.get("use_interpolated_rotary_pos_emb", False): |
|
swap_mha_rope( |
|
mha=self.inner_mha_cls, |
|
kwargs_new_rope={'scaling_factor': config.get("rotary_emb_scaling_factor", 1.)}, |
|
) |
|
|
|
if self.config.get("smeared_gqa", False): |
|
self.inner_mha_cls.num_heads_kv = self.inner_mha_cls.num_heads |
|
self.inner_mha_cls.rotary_emb.register_buffer("inv_freq", self.inner_mha_cls.rotary_emb.inv_freq) |
|
|
|
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype) |
|
|
|
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs): |
|
if ( |
|
type(padding_mask) == torch.Tensor |
|
): |
|
|
|
u = u * padding_mask[..., None] |
|
u = ( |
|
self.inner_mha_cls( |
|
self.pre_norm(u), |
|
inference_params=inference_params, |
|
) |
|
+ u |
|
) |
|
if type(padding_mask) == torch.Tensor: |
|
u = u * padding_mask[..., None] |
|
u = self.mlp(self.post_norm(u)) + u |
|
return u, None |
|
|
|
|
|
class ParallelHyenaFilter(nn.Module): |
|
def __init__(self, config, layer_idx) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hyena_filter_groups = config.get("hyena_filter_groups", self.config.hidden_size) |
|
|
|
self.use_flashfft = config.get("use_flashfft", False) |
|
self.state_size = config.state_size |
|
self.hidden_size = config.hidden_size |
|
self.num_filters = config.num_filters |
|
self.inference_mode = config.get("inference_mode", True) |
|
self.counter = 0 |
|
self.column_split_hyena = config.get("column_split_hyena", True) |
|
|
|
assert self.hidden_size % self.num_filters == 0 and self.num_filters <= self.hidden_size |
|
|
|
self.D = nn.Parameter(torch.zeros(self.hidden_size)) |
|
|
|
|
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads |
|
|
|
|
|
self.short_filter_length = config.short_filter_length |
|
self.short_filter_weight = nn.Parameter(torch.randn(3 * config.hidden_size, 1, config.short_filter_length)) |
|
self.short_filter_bias = ( |
|
nn.Parameter(torch.randn(3 * config.hidden_size)) if config.short_filter_bias else None |
|
) |
|
|
|
self.engine = HyenaInferenceEngine(layer_idx=layer_idx) |
|
self.use_flash_depthwise = config.get("use_flash_depthwise", False) |
|
self.data_dtype = None |
|
|
|
if self.use_flash_depthwise: |
|
self.fir_fn = FlashDepthwiseConv1d( |
|
channels=3 * self.hidden_size, |
|
kernel_size=self.short_filter_length, |
|
padding=self.short_filter_length - 1, |
|
weights=self.short_filter_weight, |
|
bias=self.short_filter_bias, |
|
device=None, |
|
dtype=self.config.get("depthwise_dtype", torch.bfloat16), |
|
) |
|
else: |
|
self.fir_fn = F.conv1d |
|
|
|
self.fftconv_fn = None |
|
self.long_fir_threshold = config.get("long_fir_threshold", None) |
|
if self.long_fir_threshold is not None: |
|
assert self.use_flashfft is False, "long_fir_threshold not compatible with fused flashfft" |
|
|
|
self.num_systems = self.hidden_size // self.hyena_filter_groups |
|
|
|
poles = torch.randn(self.num_systems, self.state_size, 1, 2) |
|
|
|
|
|
poles[..., 0] = 1e-2 * torch.randn(self.num_systems, self.state_size, 1) |
|
poles[..., 1] = 1e-3 * torch.randn(self.num_systems, self.state_size, 1) |
|
|
|
self.poles = nn.Parameter(poles) |
|
|
|
self.residues = nn.Parameter(torch.randn(self.num_systems, self.state_size, 1, 2)) |
|
self.h = None |
|
|
|
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs): |
|
if inference_params is not None and self.layer_idx in inference_params.fir_state_dict.keys(): |
|
return self.sequential_forward(u, inference_params) |
|
|
|
else: |
|
return self.parallel_forward(u, inference_params, padding_mask) |
|
|
|
def parallel_forward(self, u, inference_params=None, padding_mask=None): |
|
L = u.shape[1] |
|
z_pre, fir_state = self.engine.parallel_fir( |
|
self.fir_fn, |
|
u, |
|
self.short_filter_weight, |
|
self.short_filter_bias, |
|
L, |
|
fir_length=self.short_filter_length, |
|
inference_params=inference_params, |
|
padding_mask=padding_mask, |
|
) |
|
if inference_params: |
|
inference_params.fir_state_dict[self.layer_idx] = fir_state |
|
|
|
if self.h is None: |
|
h, filter_dtype, poles, residues = self.compute_filter(L, u.device) |
|
else: |
|
h = self.h |
|
filter_dtype = self.h.dtype |
|
|
|
if self.hyena_filter_groups > 1: |
|
h = h.repeat_interleave(self.hidden_size // self.hyena_filter_groups, 1) |
|
|
|
|
|
|
|
dims = ( |
|
self.hidden_size, |
|
self.num_attention_heads, |
|
self.hidden_size_per_attention_head, |
|
self.state_size, |
|
self.hyena_filter_groups, |
|
) |
|
y = self.engine.parallel_iir( |
|
z_pre, |
|
h, |
|
self.D, |
|
L, |
|
t=self.t, |
|
poles=self.poles, |
|
residues=self.residues, |
|
dims=dims, |
|
inference_params=inference_params, |
|
layer_idx=self.layer_idx, |
|
prefill_style=self.config.get("prefill_style", "fft"), |
|
use_flashfft=self.use_flashfft, |
|
fftconv_fn=self.fftconv_fn, |
|
column_split_hyena=self.column_split_hyena, |
|
long_fir_threshold=self.long_fir_threshold, |
|
padding_mask=padding_mask, |
|
) |
|
|
|
return y, inference_params |
|
|
|
def sequential_forward(self, u, inference_params): |
|
if self.data_dtype is None: |
|
self.data_dtype = u.dtype |
|
if len(u.shape) > 2: |
|
u = u[:, -1] |
|
|
|
fir_state, iir_state = ( |
|
inference_params.fir_state_dict[self.layer_idx], |
|
inference_params.state_dict[self.layer_idx], |
|
) |
|
|
|
z_pre, fir_state = self.engine.step_fir( |
|
u, fir_state, weight=self.short_filter_weight, bias=self.short_filter_bias |
|
) |
|
x2, x1, v = ( |
|
column_split(z_pre, self.num_attention_heads, self.hidden_size_per_attention_head) |
|
if self.column_split_hyena |
|
else z_pre.split([self.hidden_size, self.hidden_size, self.hidden_size], dim=1) |
|
) |
|
|
|
y, iir_state = self.engine.step_iir( |
|
x2, |
|
x1, |
|
v, |
|
self.D, |
|
self.residues, |
|
self.poles, |
|
iir_state, |
|
iir_groups=self.hyena_filter_groups, |
|
) |
|
|
|
inference_params.fir_state_dict[self.layer_idx] = fir_state |
|
inference_params.state_dict[self.layer_idx] = iir_state |
|
y = y.to(dtype=self.data_dtype) |
|
return y[:, None], inference_params |
|
|
|
def update_time(self, L, device): |
|
""" |
|
Set [0, 1, ..., L-1] where L is the length of the current batch of inputs. |
|
If L is greater than the length of the previous batch, then the time vector is |
|
reinitialized. Otherwise, the time vector is truncated from cache. |
|
""" |
|
if not hasattr(self, "t"): |
|
self.t = torch.arange(L, device=device)[None, None] |
|
elif self.t.shape[-1] < L: |
|
self.t = torch.arange(L, device=device)[None, None] |
|
else: |
|
self.t = self.t[..., :L] |
|
|
|
def compute_filter(self, L, device): |
|
self.update_time(L, device) |
|
filter_dtype = torch.float32 |
|
residues, log_poles = ( |
|
torch.view_as_complex(self.residues.to(filter_dtype)), |
|
torch.view_as_complex(self.poles.to(filter_dtype)).log(), |
|
) |
|
h = (residues * (log_poles * self.t).exp()).real.sum(1)[None] |
|
return h, filter_dtype, log_poles, residues |
|
|
|
|
|
class ParallelGatedConvBlock(nn.Module): |
|
def __init__(self, config, layer_idx) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.low_mem_mode = config.get("low_mem_mode", False) |
|
dtype = config.get("hyena_block_dtype", torch.float32) |
|
mlp_dtype = config.get("mlp_dtype", torch.bfloat16) |
|
self.pre_norm, self.post_norm = RMSNorm(config).to(dtype=dtype), RMSNorm(config).to(dtype=dtype) |
|
self.filter = ParallelHyenaFilter(config, layer_idx).to(dtype=dtype) |
|
self.projections = nn.Linear(config.hidden_size, 3 * config.hidden_size) |
|
self.out_filter_dense = nn.Linear(config.hidden_size, config.hidden_size).to(dtype) |
|
self.mlp = ParallelGatedMLP(config).to(dtype=mlp_dtype) |
|
|
|
self.proj_norm_fn = self.proj_norm |
|
self.res_mlp_norm_fn = self.res_mlp_norm |
|
|
|
if self.config.get("compile", False): |
|
self.proj_norm_fn = torch.compile(self.proj_norm, fullgraph=True, dynamic=False, mode="reduce-overhead") |
|
self.res_mlp_norm_fn = torch.compile( |
|
self.res_mlp_norm, fullgraph=True, dynamic=False, mode="reduce-overhead" |
|
) |
|
|
|
def proj_norm(self, x): |
|
return self.projections(self.pre_norm(x)) |
|
|
|
def res_mlp_norm(self, x): |
|
return self.mlp(self.post_norm(x)) + x |
|
|
|
def forward(self, u, inference_params=None, padding_mask=None, *args, **kwargs): |
|
z = self.proj_norm_fn(u) |
|
|
|
if type(padding_mask) == torch.Tensor: |
|
z = z * padding_mask[..., None] |
|
|
|
z, inference_params = self.filter(z, inference_params=inference_params, padding_mask=padding_mask) |
|
|
|
z_in = self.out_filter_dense(z) + u |
|
|
|
if type(padding_mask) == torch.Tensor: |
|
z_in = z_in * padding_mask[..., None] |
|
|
|
y = self.res_mlp_norm_fn(z_in) |
|
|
|
return y, inference_params |
|
|
|
|
|
def get_block(config, layer_idx, flash_fft=None): |
|
if layer_idx in config.attn_layer_idxs: |
|
return AttentionBlock(config, layer_idx) |
|
elif layer_idx in config.hyena_layer_idxs: |
|
block = ParallelGatedConvBlock(config, layer_idx) |
|
if config.get("use_flashfft", "False"): |
|
block.filter.fftconv_fn = flash_fft |
|
return block |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
class StripedHyena(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embedding_layer = VocabParallelEmbedding(config) |
|
self.norm = RMSNorm(config) if config.get("final_norm", True) else None |
|
self.unembed = self.embedding_layer if config.tie_embeddings else VocabParallelEmbedding(config) |
|
|
|
if config.get("use_flashfft", "False"): |
|
try: |
|
from flashfftconv import FlashFFTConv |
|
except: |
|
raise ImportError |
|
self.flash_fft = FlashFFTConv(2 * config.seqlen, dtype=torch.bfloat16) |
|
else: |
|
self.flash_fft = None |
|
|
|
self.blocks = nn.ModuleList( |
|
get_block(config, layer_idx, flash_fft=self.flash_fft) for layer_idx in range(config.num_layers) |
|
) |
|
self.gradient_checkpointing = False |
|
self._gradient_checkpointing_func = None |
|
|
|
def forward(self, x, inference_params_dict=None, padding_mask=None): |
|
L = x.shape[1] |
|
x = self.embedding_layer.embed(x) |
|
if inference_params_dict is not None: |
|
x, inference_params_dict_out = self.stateful_forward( |
|
x, |
|
inference_params_dict=inference_params_dict, |
|
) |
|
else: |
|
x, inference_params_dict_out = self.stateless_forward(x, padding_mask=padding_mask) |
|
|
|
x = self.norm(x) |
|
x = self.unembed.unembed(x) |
|
return x, inference_params_dict_out |
|
|
|
def stateful_forward(self, x, inference_params_dict=None): |
|
for block_idx, block in enumerate(self.blocks): |
|
block_name = "mha" if block_idx in self.config.attn_layer_idxs else "hyena" |
|
inference_params = inference_params_dict[block_name] |
|
x, _ = block(x, inference_params=inference_params) |
|
|
|
return x, inference_params_dict |
|
|
|
def stateless_forward(self, x, padding_mask=None): |
|
if type(padding_mask) == torch.Tensor: |
|
x = x * padding_mask[..., None] |
|
|
|
for _, block in enumerate(self.blocks): |
|
if self.gradient_checkpointing and self.training: |
|
x, _ = self._gradient_checkpointing_func(block.__call__, x, None, padding_mask) |
|
else: |
|
x, _ = block(x, inference_params=None, padding_mask=padding_mask) |
|
|
|
return x, None |
|
|
|
def initialize_inference_params(self): |
|
print_rank_0("Initializing inference params...") |
|
inference_params_dict = { |
|
"mha": InferenceParams( |
|
max_seqlen=self.config.get("max_seqlen", 8192), |
|
max_batch_size=self.config.get("max_batch_size", 1), |
|
seqlen_offset=0, |
|
), |
|
"hyena": RecurrentInferenceParams( |
|
fir_filter_length=self.config.short_filter_length, |
|
state_dim=self.config.state_size, |
|
seqlen_offset=0, |
|
), |
|
} |
|
return inference_params_dict |
|
|
|
def precompute_filters(self, L, device): |
|
for block_idx, block in enumerate(self.blocks): |
|
if type(block) == ParallelGatedConvBlock: |
|
if type(block.filter) == ParallelHyenaFilter: |
|
L = block.filter.long_fir_threshold or L |
|
print_rank_0(f"Precomputing filters, L={L}...") |
|
|
|
filter_dtype = torch.float16 if L >= 2048 else torch.float32 |
|
|
|
block.filter._set_time(L, device) |
|
residues, poles = ( |
|
torch.view_as_complex(block.filter.residues.to(torch.float16)), |
|
torch.view_as_complex(block.filter.poles.to(torch.float16)), |
|
) |
|
|
|
block.filter.h = (residues * poles**block.filter.t).real.sum(1)[None] |
|
block.filter.h = block.filter.h.to(dtype=filter_dtype) |
|
|
|
def load_poles_residues(self, path): |
|
"Load different poles and residues for each layer." |
|
for block_idx, block in enumerate(self.blocks): |
|
if type(block) == ParallelGatedConvBlock: |
|
if type(block.filter) == ParallelHyenaFilter: |
|
print(f"Loading poles and residues for block {block_idx}") |
|
poles = torch.load(path + f"/approx_poles_{block_idx+1}.pt", map_location="cpu") |
|
poles = torch.view_as_real(poles) |
|
residues = torch.load(path + f"/approx_residues_{block_idx+1}.pt", map_location="cpu") |
|
residues = torch.view_as_real(residues) |
|
poles = poles.permute(1, 0, 2).unsqueeze(-2) |
|
residues = residues.permute(1, 0, 2).unsqueeze(-2) |
|
|
|
block.filter.poles = nn.Parameter(poles) |
|
block.filter.residues = nn.Parameter(residues) |
|
|
|
def to_bfloat16_except_poles_residues(self): |
|
"""Convert all parameters to bfloat16 except for the poles and residues. |
|
|
|
Particularly important for longer prompts. |
|
""" |
|
for k, p in self.named_parameters(): |
|
if "poles" not in k and "residues" not in k: |
|
p.data = p.data.to(torch.bfloat16) |
|
|
|
def load_from_split_converted_state_dict(self, path): |
|
|
|
print("Loading from split converted state dict") |
|
|
|
embedding_weight = torch.load(path + "/layer_00.pt")["word_embeddings.weight"] |
|
self.embedding_layer.weight = nn.Parameter(embedding_weight.to(self.embedding_layer.weight.dtype)) |
|
|
|
print("Loading embedding weight ok") |
|
|
|
if self.config.get("final_norm", False) is not None: |
|
idx = len(self.blocks) + 1 |
|
final_norm_scale = torch.load(path + f"/layer_{idx:02d}.pt")["norm.scale"] |
|
self.norm.scale = nn.Parameter(final_norm_scale.to(self.norm.scale.dtype)) |
|
|
|
print("loading final norm ok") |
|
|
|
if not self.config.get("tie_embeddings", True): |
|
idx = len(self.blocks) + 2 |
|
embedding_weight = torch.load(path + f"/layer_{idx:02d}.pt")["word_embeddings.weight"] |
|
self.unembed.weight = nn.Parameter(embedding_weight.to(self.unembed.weight.dtype)) |
|
|
|
print("loading unembed weight ok") |
|
|
|
for block_idx, block in enumerate(self.blocks): |
|
print("loading block {}...".format(block_idx)) |
|
|
|
|
|
strict = True |
|
|
|
loaded_dict = torch.load(path + f"/layer_{block_idx + 1:02d}.pt") |
|
block.load_state_dict(loaded_dict, strict=strict) |