evo-1-131k-base / layers.py
Zymrael
init
27140ac
raw
history blame
5.39 kB
# Copyright (c) Together
# This software is distributed under the terms of the Apache License, Version 2.0
# Author: Michael Poli
import torch
from torch import Tensor
import torch.nn.functional as F
import torch.nn as nn
from .utils import grab_first_if_tuple
def grab_first_if_tuple(x):
if x.__class__.__name__ == "tuple":
return x[0]
else:
return x
class RMSNorm(torch.nn.Module):
def __init__(self, config):
super(RMSNorm, self).__init__()
self.eps, self.hidden_size = config.eps, config.hidden_size
self.scale = torch.nn.Parameter(torch.ones(self.hidden_size))
self.register_parameter("scale", self.scale)
self.use_flash_rmsnorm = config.get("use_flash_rmsnorm", False)
if self.use_flash_rmsnorm:
try:
from flash_attn.ops.rms_norm import rms_norm as rmsnorm_func
self.rmsnorm_func = rmsnorm_func
except:
raise ImportError(
"For `use_flash_rmsnorm`: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/layer_norm`"
)
def forward(self, x):
if self.use_flash_rmsnorm:
return self.rmsnorm_func(x, self.scale, self.eps)
else:
y = x / (x.norm(2, dim=-1, keepdim=True) * self.hidden_size ** (-1.0 / 2) + self.eps)
return self.scale * y
class ParallelGatedMLP(nn.Module):
def __init__(
self,
config,
):
super().__init__()
multiple_of = config.get("inner_size_multiple_of", 64)
self.act_type = config.get("mlp_activation", "silu")
if self.act_type == "gelu":
self.act = F.gelu
elif self.act_type == "silu":
self.act = F.silu
else:
raise NotImplementedError
self.multiple_of = multiple_of * config.model_parallel_size
inner_size = int(2 * config.hidden_size * 4 / 3)
inner_size = self.multiple_of * ((inner_size + self.multiple_of - 1) // self.multiple_of)
if config.get("inner_mlp_size", None) is not None:
inner_size = config.inner_mlp_size
self.l1 = nn.Linear(
in_features=config.hidden_size,
out_features=inner_size,
bias=False,
)
self.l2 = nn.Linear(
in_features=config.hidden_size,
out_features=inner_size,
bias=False,
)
self.l3 = nn.Linear(
in_features=inner_size,
out_features=config.hidden_size,
bias=False,
)
def forward(self, z):
z1, z2 = self.l1(z), self.l2(z)
z1, z2 = grab_first_if_tuple(z1), grab_first_if_tuple(z2)
y = self.l3(self.act(z1) * z2)
return grab_first_if_tuple(y)
class Embedding(nn.Module):
_train_dtype = "bf16"
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
def embed(self, input_ids, position_ids=None, tokentype_ids=None):
embeddings = self.word_embeddings(input_ids)
return embeddings
def unembed(self, u):
weight = self.word_embeddings.weight
return torch.matmul(u, weight)
class VocabParallelEmbedding(nn.Embedding):
"Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py"
def __init__(self, config):
vocab_size, process_group, padding_idx = (
config.vocab_size,
config.get("process_group", None),
config.get("padding_idx", None),
)
self.process_group = process_group
if process_group is not None:
world_size = torch.distributed.get_world_size(process_group)
if vocab_size % world_size != 0:
raise ValueError(
f"vocab_size ({vocab_size}) must be divisible by " f"world_size ({world_size})"
)
if world_size > 1 and padding_idx is not None:
raise RuntimeError("ParallelEmbedding does not support padding_idx")
else:
world_size = 1
super().__init__(
vocab_size // world_size,
embedding_dim=config.hidden_size,
padding_idx=padding_idx,
)
def embed(self, x: Tensor) -> Tensor:
if self.process_group is None:
return self.forward(x)
else:
rank = torch.distributed.get_rank(self.process_group)
vocab_size = self.num_embeddings
vocab_start_index, vocab_end_index = (
rank * vocab_size,
(rank + 1) * vocab_size,
)
# Create a mask of valid vocab ids (1 means it needs to be masked).
input_ids_mask = (x < vocab_start_index) | (x >= vocab_end_index)
x = x - vocab_start_index
x[input_ids_mask] = 0
embeddings = self.forward(x)
embeddings[input_ids_mask] = 0.0
# Reduce to the global process group
torch.distributed.all_reduce(embeddings, group=self.process_group)
return embeddings
def unembed(self, u: Tensor) -> Tensor:
if self.process_group is None:
return u @ self.weight.T
else:
raise NotImplementedError