|
|
|
|
|
|
|
|
|
import gc |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
try: |
|
import conv1d_cpp |
|
except: |
|
pass |
|
from .utils import column_split |
|
|
|
IIR_PREFILL_MODES = [ |
|
"recurrence", |
|
"modal-fft", |
|
"hybrid-modal-recurrence", |
|
"modal-scan", |
|
"canonical-fft", |
|
"iir-fir-caching", |
|
] |
|
|
|
|
|
def canonicalize_modal_system(poles, residues): |
|
"""Canonicalize a modal system. |
|
|
|
Args: |
|
poles (Tensor): The poles of the system. |
|
residues (Tensor): The residues of the system. |
|
|
|
Returns: |
|
Tuple[Tensor, Tensor]: The canonicalized poles and residues. |
|
""" |
|
raise NotImplementedError |
|
|
|
|
|
def list_tensors(idx): |
|
for obj in gc.get_objects(): |
|
try: |
|
if torch.is_tensor(obj) and isinstance(obj, torch.Tensor): |
|
|
|
print(type(obj), obj.size()) |
|
el = obj[0] |
|
with open(f"tensors_{idx}.txt", "a") as f: |
|
f.write(f"{type(obj)} {obj.size()} {el}\n") |
|
except Exception as e: |
|
pass |
|
|
|
|
|
class HyenaInferenceEngine: |
|
def __init__( |
|
self, |
|
fir_fn=None, |
|
iir_prefill_style="modal-fft", |
|
layer_idx=None, |
|
) -> None: |
|
self.fir_fn = fir_fn |
|
assert iir_prefill_style in IIR_PREFILL_MODES, f"iir_prefill_style must be one of {IIR_PREFILL_MODES}" |
|
self.iir_prefill_style = iir_prefill_style |
|
self.layer_idx = layer_idx |
|
self.low_mem_mode = False |
|
|
|
def parallel_fir( |
|
self, |
|
fir_fn, |
|
u, |
|
weight, |
|
bias, |
|
L, |
|
fir_length=3, |
|
inference_params=None, |
|
prefill_mode=None, |
|
padding_mask=None, |
|
): |
|
"""Compute the output state of the long convolutional filter.""" |
|
|
|
if fir_fn != torch.nn.functional.conv1d: |
|
z_pre = fir_fn(u)[:, :L] |
|
z_pre = z_pre.permute(0, 2, 1) |
|
else: |
|
u = u.permute(0, 2, 1) |
|
z_pre = fir_fn( |
|
u, |
|
weight, |
|
bias=None, |
|
stride=1, |
|
padding=fir_length - 1, |
|
groups=u.shape[1], |
|
)[..., :L] |
|
|
|
|
|
z_pre = z_pre + bias[None, :, None] |
|
|
|
|
|
if type(padding_mask) == torch.Tensor: |
|
z_pre = z_pre * padding_mask[:, None] |
|
|
|
if inference_params is not None: |
|
|
|
if fir_fn != torch.nn.functional.conv1d: |
|
fir_state = u[:, -fir_length + 1 :].permute(0, 2, 1) |
|
else: |
|
fir_state = u[..., -fir_length + 1 :] |
|
else: |
|
fir_state = None |
|
|
|
return z_pre, fir_state |
|
|
|
def parallel_iir( |
|
self, |
|
z_pre, |
|
h, |
|
D, |
|
L, |
|
poles, |
|
residues, |
|
t, |
|
dims, |
|
layer_idx, |
|
inference_params=None, |
|
prefill_style="fft", |
|
fftconv_fn=None, |
|
padding_mask=None, |
|
use_flashfft=False, |
|
column_split_hyena=False, |
|
long_fir_threshold=None, |
|
): |
|
"""Compute the output state of the short convolutional filter.""" |
|
fft_size = 2 * L |
|
hidden_size, num_attention_heads, hidden_size_per_attention_head, _, _ = dims |
|
|
|
if column_split_hyena: |
|
z = z_pre.reshape( |
|
z_pre.shape[0], |
|
num_attention_heads, |
|
3 * hidden_size_per_attention_head, |
|
z_pre.shape[2], |
|
) |
|
x2, x1, v = ( |
|
z[:, :, :hidden_size_per_attention_head], |
|
z[ |
|
:, |
|
:, |
|
hidden_size_per_attention_head : 2 * hidden_size_per_attention_head, |
|
], |
|
z[:, :, 2 * hidden_size_per_attention_head :], |
|
) |
|
x2, x1, v = ( |
|
x2.reshape(x2.shape[0], -1, x2.shape[-1]), |
|
x1.reshape(x1.shape[0], -1, x1.shape[-1]), |
|
v.reshape(v.shape[0], -1, v.shape[-1]), |
|
) |
|
else: |
|
x2, x1, v = z_pre.split([hidden_size, hidden_size, hidden_size], dim=1) |
|
|
|
x1v = x1 * v |
|
|
|
if inference_params is not None and prefill_style == "recurrence": |
|
y = self.prefill_via_direct_recurrence( |
|
inference_params=inference_params, |
|
x1v=x1v, |
|
L=L, |
|
poles=poles, |
|
residues=residues, |
|
) |
|
|
|
else: |
|
if use_flashfft and (L % 2) == 0: |
|
y = fftconv_fn( |
|
x1v.to(dtype=torch.bfloat16).contiguous(), |
|
h.to(dtype=torch.float32), |
|
) |
|
X_s = None |
|
|
|
elif long_fir_threshold is None: |
|
H = torch.fft.rfft(h.to(dtype=torch.float32), n=fft_size) / fft_size |
|
X_s = torch.fft.fft(x1v.to(dtype=torch.float32), n=fft_size) |
|
X = X_s[..., : H.shape[-1]] |
|
if len(z_pre.shape) > 3: |
|
H = H.unsqueeze(1) |
|
y = torch.fft.irfft(X * H, n=fft_size, norm="forward")[..., :L] |
|
|
|
else: |
|
assert h.shape[0] == 1, "batch size must be 1 for long_fir_threshold" |
|
h = h[0][:, None] |
|
h = h[..., :long_fir_threshold] |
|
y = F.conv1d( |
|
x1v, |
|
h.to(dtype=x1v.dtype), |
|
stride=1, |
|
groups=x1v.shape[1], |
|
padding=h.shape[-1] - 1, |
|
)[..., :L] |
|
|
|
y = y.to(dtype=x1v.dtype) |
|
y = (y + x1v * D.unsqueeze(-1)) * x2 |
|
|
|
if inference_params is not None: |
|
if prefill_style == "fft": |
|
self.prefill_via_modal_fft( |
|
inference_params=inference_params, |
|
x1v=x1v, |
|
X_s=X_s, |
|
L=L, |
|
t=t, |
|
poles=poles, |
|
dims=dims, |
|
layer_idx=layer_idx, |
|
use_flashfft=use_flashfft, |
|
fftconv_fn=fftconv_fn, |
|
) |
|
|
|
elif prefill_style == "recurrence": |
|
|
|
pass |
|
else: |
|
raise NotImplementedError |
|
if self.low_mem_mode: |
|
|
|
del z_pre, x2, x1, v, x1v, h, poles, residues |
|
torch.cuda.empty_cache() |
|
|
|
return y.permute(0, 2, 1) |
|
|
|
def step_fir(self, u, fir_state, weight, bias=None): |
|
"""Step the FIR filter. |
|
|
|
Note: |
|
`fir_state` contains the last `short_filter_length - 1` elements of `u`: `u_(L-2), u_{L-1), ...` |
|
We assume dimensions of `short_filter_weight` to be `[d, 1, short_filter_len]` (SISO / multi SISO layout). |
|
""" |
|
h0, h = weight[..., 0, -1], weight[..., 0, :-1] |
|
h0, h = h0[None], h[None] |
|
y = h0 * u + torch.sum(fir_state * h, dim=-1) + bias |
|
|
|
|
|
fir_state = torch.roll(fir_state, -1, dims=2) |
|
fir_state[..., -1] = u |
|
return y, fir_state |
|
|
|
def step_iir(self, x2, x1, v, D, residues, poles, iir_state, iir_groups=1): |
|
x1v = x1 * v |
|
|
|
residues, poles = ( |
|
torch.view_as_complex(residues.to(torch.float32)), |
|
torch.view_as_complex(poles.to(torch.float32)), |
|
) |
|
|
|
|
|
residues, poles = residues[..., 0][None], poles[..., 0][None] |
|
iir_state = poles * iir_state + x1v[..., None] |
|
|
|
res_state = torch.sum(residues * iir_state, dim=-1).real |
|
|
|
if iir_groups > 1: |
|
raise NotImplementedError |
|
y = x2 * (res_state + D * x1v) |
|
|
|
return y, iir_state |
|
|
|
def prefill_via_fir_caching(self, u, inference_params, L, *args, **kwargs): |
|
"""Turns the IIR filter into a FIR and uses a cache for decoding.""" |
|
raise NotImplementedError(":)") |
|
|
|
def prefill_via_direct_recurrence( |
|
self, inference_params, x1v, L, residues, poles, *args, **kwargs |
|
) -> torch.Tensor: |
|
""" |
|
Compute the IIR state via explicit SSM recurrence (modal form) |
|
|
|
This is the most memory efficient prefilling method for Hyena filters. |
|
|
|
Note: |
|
dtypes: [state: float32, poles: float32, x1v: bfloat16, output: bfloat16] |
|
""" |
|
state_dim = poles.shape[1] |
|
x1v_ = x1v[..., None, None] |
|
x1v_ = x1v_.repeat(1, 1, 1, state_dim, 2) |
|
x1v_[..., 1] = 0 |
|
|
|
state = 0 * x1v_[:, :, 0] |
|
output = 0 * x1v_[:, :, :, 0, 0] |
|
|
|
|
|
poles = poles[:, :, 0][None] |
|
residues = residues[:, :, 0][None].repeat(x1v_.shape[0], 1, 1, 1) |
|
|
|
|
|
|
|
|
|
for i in range(L): |
|
state[..., 0] = poles[..., 0] * state[..., 0] - poles[..., 1] * state[..., 1] + x1v_[:, :, i, :, 0] |
|
state[..., 1] = poles[..., 0] * state[..., 1] + poles[..., 1] * state[..., 0] + x1v_[:, :, i, :, 1] |
|
output[:, :, i] = torch.sum(residues * state, dim=-2)[..., 0] |
|
|
|
inference_params.state_dict[self.layer_idx] = torch.view_as_complex(state.to(dtype=torch.float32)) |
|
|
|
return output |
|
|
|
def prefill_via_hybrid_recurrence(self, inference_params, u, log_poles, x1v_f_a, L, *args, **kwargs): |
|
""" |
|
Compute the IIR state via hybrid recurrence-convolution over blocks |
|
""" |
|
raise NotImplementedError(":)") |
|
|
|
def prefill_via_scan(self, u, inference_params=None, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
def prefill_via_canonical_fft(self, u, inference_params=None, *args, **kwargs): |
|
""" |
|
Compute the IIR state via a single FFT with the denominator of the SSM in companion form. |
|
|
|
This is the most memory efficient "parallelized" prefilling method for Hyena. |
|
|
|
From: https://arxiv.org/abs/2310.18780 |
|
""" |
|
raise NotImplementedError(":)") |
|
|
|
def prefill_via_modal_fft( |
|
self, |
|
inference_params, |
|
x1v, |
|
L, |
|
poles, |
|
t, |
|
dims, |
|
layer_idx, |
|
X_s=None, |
|
use_flashfft=False, |
|
fftconv_fn=None, |
|
state_dtype=torch.complex64, |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Compute the IIR state via a single FFT, using the poles of the SSM in modal form. |
|
""" |
|
|
|
|
|
|
|
hidden_size, _, _, state_size, hyena_filter_groups = dims |
|
|
|
if use_flashfft: |
|
|
|
poles = poles.squeeze().reshape(poles.shape[0], -1)[..., None] |
|
|
|
state_s = poles**t |
|
if hyena_filter_groups > 1: |
|
raise NotImplementedError |
|
|
|
x1v = x1v[:, :, None].repeat(1, 1, 2 * state_size, 1) |
|
x1v = x1v.reshape(x1v.shape[0], -1, x1v.shape[-1]) |
|
state_s = state_s[None] |
|
|
|
state = fftconv_fn( |
|
x1v.contiguous(), |
|
state_s.to(dtype=torch.float32), |
|
) |
|
state = state[..., L - 1].reshape(x1v.shape[0], hidden_size, state_size, 2) |
|
state = torch.view_as_complex(state.contiguous().to(dtype=torch.float32)) |
|
inference_params.state_dict[self.layer_idx] = state |
|
else: |
|
assert X_s is not None |
|
bs = x1v.shape[0] |
|
fft_size = 2 * L |
|
poles = torch.view_as_complex(poles.to(torch.float32)) |
|
state_s = poles**t |
|
state_S = torch.fft.fft(state_s, n=fft_size).repeat(bs, 1, 1, 1) |
|
if hyena_filter_groups > 1: |
|
state_S = state_S.repeat_interleave(hidden_size // hyena_filter_groups, 1) |
|
state = torch.fft.ifft(X_s[..., None, :] * state_S, n=fft_size) |
|
inference_params.state_dict[layer_idx] = state[..., L - 1].to(dtype=state_dtype) |
|
|
|
def _compute_state(self, log_poles, u, t, L, *args, **kwargs): |
|
""" |
|
Compute the IIR state given an input `u` and log_poles of the modal system. |
|
""" |
|
bs = u.shape[0] |
|
fft_size = 2 * L |
|
U = torch.fft.rfft(u.to(torch.float32), n=fft_size) |
|
fft_size = 2 * L |
|
x = (log_poles * t).exp() |
|
|
|
X = torch.fft.fft(x, n=fft_size).repeat(bs, 1, 1, 1) |
|
state = torch.fft.ifft(U[..., None, :] * X, n=fft_size)[..., :L] |
|
return state |
|
|