Update README.md
Browse files
README.md
CHANGED
@@ -18,7 +18,10 @@ Together partnered with LAION and Ontocord.ai, who both helped curate the datase
|
|
18 |
You can read more about this process and the availability of this dataset in LAION’s blog post [here](https://laion.ai/blog/oig-dataset/).
|
19 |
|
20 |
In addition to the aforementioned fine-tuning, Pythia-Chat-Base-7B-v0.16 has also undergone further fine-tuning via a small amount of feedback data.
|
21 |
-
This allows the model to better adapt to human preferences in the conversations.
|
|
|
|
|
|
|
22 |
|
23 |
## Model Details
|
24 |
- **Developed by**: Together Computer.
|
@@ -30,18 +33,59 @@ This allows the model to better adapt to human preferences in the conversations.
|
|
30 |
|
31 |
# Quick Start
|
32 |
|
|
|
|
|
|
|
33 |
```python
|
34 |
-
from transformers import
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
38 |
-
|
|
|
|
|
|
|
39 |
```python
|
40 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
41 |
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
42 |
-
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
## Strengths of the model
|
46 |
|
47 |
There are several tasks that OpenChatKit excels at out of the box. This includes:
|
|
|
18 |
You can read more about this process and the availability of this dataset in LAION’s blog post [here](https://laion.ai/blog/oig-dataset/).
|
19 |
|
20 |
In addition to the aforementioned fine-tuning, Pythia-Chat-Base-7B-v0.16 has also undergone further fine-tuning via a small amount of feedback data.
|
21 |
+
This process allows the model to better adapt to human preferences in the conversations.
|
22 |
+
|
23 |
+
One of the notable features of Pythia-Chat-Base-7B-v0.16 is its ability to **run inference on a 12GB GPU**, thanks to the quantization technique.
|
24 |
+
This makes the model not only highly accurate and efficient but also accessible to a wider range of users and hardware configurations.
|
25 |
|
26 |
## Model Details
|
27 |
- **Developed by**: Together Computer.
|
|
|
33 |
|
34 |
# Quick Start
|
35 |
|
36 |
+
## GPU Inference
|
37 |
+
|
38 |
+
This requires a GPU with 16GB memory.
|
39 |
```python
|
40 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
+
|
42 |
+
# init
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16", torch_dtype=torch.float16)
|
45 |
+
model = model.to('cuda:0')
|
46 |
+
|
47 |
+
# infer
|
48 |
+
inputs = tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(model.device)
|
49 |
+
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
|
50 |
+
output_str = tokenizer.decode(outputs[0])
|
51 |
+
print(output_str)
|
52 |
```
|
53 |
+
|
54 |
+
## GPU Inference in Int8
|
55 |
+
|
56 |
+
This requires a GPU with 12GB memory.
|
57 |
```python
|
58 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
59 |
+
|
60 |
+
# init
|
61 |
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16", device_map="auto", load_in_8bit=True)
|
63 |
+
|
64 |
+
# infer
|
65 |
+
inputs = tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(model.device)
|
66 |
+
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
|
67 |
+
output_str = tokenizer.decode(outputs[0])
|
68 |
+
print(output_str)
|
69 |
```
|
70 |
|
71 |
+
|
72 |
+
## CPU Inference
|
73 |
+
|
74 |
+
```python
|
75 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
76 |
+
|
77 |
+
# init
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16")
|
79 |
+
model = AutoModelForCausalLM.from_pretrained("togethercomputer/Pythia-Chat-Base-7B-v0.16", torch_dtype=torch.bfloat16)
|
80 |
+
|
81 |
+
# infer
|
82 |
+
inputs = tokenizer("<human>: Hello!\n<bot>:", return_tensors='pt').to(model.device)
|
83 |
+
outputs = model.generate(**inputs, max_new_tokens=10, do_sample=True, temperature=0.8)
|
84 |
+
output_str = tokenizer.decode(outputs[0])
|
85 |
+
print(output_str)
|
86 |
+
```
|
87 |
+
|
88 |
+
|
89 |
## Strengths of the model
|
90 |
|
91 |
There are several tasks that OpenChatKit excels at out of the box. This includes:
|