tmsreekanth98's picture
update model card README.md
116dd7a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - kp20k
metrics:
  - rouge
model-index:
  - name: keyphrase-extractions_bart-large
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: kp20k
          type: kp20k
          config: generation
          split: train[:15%]
          args: generation
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.4713

keyphrase-extractions_bart-large

This model is a fine-tuned version of facebook/bart-large on the kp20k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7257
  • Rouge1: 0.4713
  • Rouge2: 0.2385
  • Rougel: 0.384
  • Rougelsum: 0.3841
  • Gen Len: 18.3164
  • Phrase match: 0.1917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Phrase match
2.5104 1.0 730 1.8021 0.464 0.2336 0.3765 0.3766 18.9074 0.1784
1.8436 2.0 1460 1.7473 0.4709 0.2381 0.3834 0.3836 17.8127 0.1891
1.6864 3.0 2190 1.7257 0.4713 0.2385 0.384 0.3841 18.3164 0.1917

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2