metadata
language:
- en
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
- f1
model-index:
- name: bert-base-multilingual-cased-qqp-100
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/QQP
type: tmnam20/VieGLUE
config: qqp
split: validation
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8905515706158793
- name: F1
type: f1
value: 0.8513354611120443
bert-base-multilingual-cased-qqp-100
This model is a fine-tuned version of bert-base-multilingual-cased on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.2983
- Accuracy: 0.8906
- F1: 0.8513
- Combined Score: 0.8709
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.3417 | 0.44 | 5000 | 0.3198 | 0.8578 | 0.8057 | 0.8317 |
0.2998 | 0.88 | 10000 | 0.2908 | 0.8724 | 0.8252 | 0.8488 |
0.2629 | 1.32 | 15000 | 0.2970 | 0.8763 | 0.8300 | 0.8532 |
0.2269 | 1.76 | 20000 | 0.2874 | 0.8845 | 0.8405 | 0.8625 |
0.1933 | 2.2 | 25000 | 0.2962 | 0.8867 | 0.8470 | 0.8669 |
0.1752 | 2.64 | 30000 | 0.3174 | 0.8895 | 0.8497 | 0.8696 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0