|
--- |
|
license: mit |
|
datasets: |
|
- yahma/alpaca-cleaned |
|
--- |
|
|
|
This repo contains a low-rank adapter for LLaMA-7b |
|
fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset. |
|
|
|
This version of the weights was trained with the following hyperparameters: |
|
|
|
- Epochs: 10 (load from best epoch) |
|
- Batch size: 128 |
|
- Cutoff length: 512 |
|
- Learning rate: 3e-4 |
|
- Lora _r_: 16 |
|
- Lora target modules: q_proj, k_proj, v_proj, o_proj |
|
|
|
That is: |
|
|
|
``` |
|
python finetune.py \ |
|
--base_model='decapoda-research/llama-7b-hf' \ |
|
--num_epochs=10 \ |
|
--cutoff_len=512 \ |
|
--group_by_length \ |
|
--output_dir='./lora-alpaca-512-qkvo' \ |
|
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ |
|
--lora_r=16 \ |
|
--micro_batch_size=8 |
|
``` |
|
|
|
Instructions for running it can be found at https://github.com/tloen/alpaca-lora. |