jq_emo_distilbert / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
b64f158
|
raw
history blame
2.27 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
base_model: tingtone/jq_emo_distilbert
model-index:
  - name: jq_emo_distilbert
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - type: accuracy
            value: 0.9385
            name: Accuracy

jq_emo_distilbert

This model is a fine-tuned version of tingtone/jq_emo_distilbert on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3185
  • Accuracy: 0.9385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 16000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1042 1.0 1000 0.1816 0.932
0.0998 2.0 2000 0.1799 0.934
0.0957 3.0 3000 0.2015 0.935
0.0846 4.0 4000 0.2129 0.9335
0.0943 5.0 5000 0.2215 0.935
0.075 6.0 6000 0.2627 0.9375
0.0607 7.0 7000 0.2908 0.9345
0.0636 8.0 8000 0.3207 0.935
0.0953 9.0 9000 0.3165 0.936
0.0748 10.0 10000 0.3185 0.9385

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3