go_emo_gpt / README.md
tingtone's picture
update model card README.md
c895f93
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - go_emotions
metrics:
  - f1
  - accuracy
model-index:
  - name: go_emo_gpt
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: go_emotions
          type: go_emotions
          config: simplified
          split: validation
          args: simplified
        metrics:
          - name: F1
            type: f1
            value: 0.6009707054948864
          - name: Accuracy
            type: accuracy
            value: 0.49963140434942865

go_emo_gpt

This model is a fine-tuned version of gpt2 on the go_emotions dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0964
  • F1: 0.6010
  • Roc Auc: 0.7659
  • Accuracy: 0.4996

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: (13023,)
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.105 1.0 43410 0.0967 0.5795 0.7476 0.4757
0.0949 2.0 86820 0.0938 0.6012 0.7636 0.5035
0.0837 3.0 130230 0.0964 0.6010 0.7659 0.4996

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3