Update model config and README
Browse files- README.md +106 -2
- config.json +1 -1
- model.safetensors +3 -0
README.md
CHANGED
@@ -2,6 +2,110 @@
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
-
# Model card for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
- imagenet-12k
|
10 |
---
|
11 |
+
# Model card for vit_medium_patch16_gap_384.sw_in12k_ft_in1k
|
12 |
+
|
13 |
+
A Vision Transformer (ViT) image classification model. This is a `timm` specific variation of the architecture with token global average pooling. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman in `timm` using recipe template described below.
|
14 |
+
|
15 |
+
Recipe details:
|
16 |
+
* Based on Swin Transformer train / pretrain recipe with modifications (related to both DeiT and ConvNeXt recipes)
|
17 |
+
* AdamW optimizer, gradient clipping, EMA weight averaging
|
18 |
+
* Cosine LR schedule with warmup
|
19 |
+
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
- **Model Type:** Image classification / feature backbone
|
23 |
+
- **Model Stats:**
|
24 |
+
- Params (M): 39.0
|
25 |
+
- GMACs: 22.0
|
26 |
+
- Activations (M): 32.1
|
27 |
+
- Image size: 384 x 384
|
28 |
+
- **Papers:**
|
29 |
+
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
|
30 |
+
- **Dataset:** ImageNet-1k
|
31 |
+
- **Pretrain Dataset:** ImageNet-12k
|
32 |
+
- **Original:** https://github.com/huggingface/pytorch-image-models
|
33 |
+
|
34 |
+
## Model Usage
|
35 |
+
### Image Classification
|
36 |
+
```python
|
37 |
+
from urllib.request import urlopen
|
38 |
+
from PIL import Image
|
39 |
+
import timm
|
40 |
+
|
41 |
+
img = Image.open(urlopen(
|
42 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
43 |
+
))
|
44 |
+
|
45 |
+
model = timm.create_model('vit_medium_patch16_gap_384.sw_in12k_ft_in1k', pretrained=True)
|
46 |
+
model = model.eval()
|
47 |
+
|
48 |
+
# get model specific transforms (normalization, resize)
|
49 |
+
data_config = timm.data.resolve_model_data_config(model)
|
50 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
51 |
+
|
52 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
53 |
+
|
54 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
55 |
+
```
|
56 |
+
|
57 |
+
### Image Embeddings
|
58 |
+
```python
|
59 |
+
from urllib.request import urlopen
|
60 |
+
from PIL import Image
|
61 |
+
import timm
|
62 |
+
|
63 |
+
img = Image.open(urlopen(
|
64 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
65 |
+
))
|
66 |
+
|
67 |
+
model = timm.create_model(
|
68 |
+
'vit_medium_patch16_gap_384.sw_in12k_ft_in1k',
|
69 |
+
pretrained=True,
|
70 |
+
num_classes=0, # remove classifier nn.Linear
|
71 |
+
)
|
72 |
+
model = model.eval()
|
73 |
+
|
74 |
+
# get model specific transforms (normalization, resize)
|
75 |
+
data_config = timm.data.resolve_model_data_config(model)
|
76 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
77 |
+
|
78 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
79 |
+
|
80 |
+
# or equivalently (without needing to set num_classes=0)
|
81 |
+
|
82 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
83 |
+
# output is unpooled, a (1, 576, 512) shaped tensor
|
84 |
+
|
85 |
+
output = model.forward_head(output, pre_logits=True)
|
86 |
+
# output is a (1, num_features) shaped tensor
|
87 |
+
```
|
88 |
+
|
89 |
+
## Model Comparison
|
90 |
+
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
|
91 |
+
|
92 |
+
## Citation
|
93 |
+
```bibtex
|
94 |
+
@misc{rw2019timm,
|
95 |
+
author = {Ross Wightman},
|
96 |
+
title = {PyTorch Image Models},
|
97 |
+
year = {2019},
|
98 |
+
publisher = {GitHub},
|
99 |
+
journal = {GitHub repository},
|
100 |
+
doi = {10.5281/zenodo.4414861},
|
101 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
102 |
+
}
|
103 |
+
```
|
104 |
+
```bibtex
|
105 |
+
@article{dosovitskiy2020vit,
|
106 |
+
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
|
107 |
+
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
|
108 |
+
journal={ICLR},
|
109 |
+
year={2021}
|
110 |
+
}
|
111 |
+
```
|
config.json
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
"num_features": 512,
|
5 |
"global_pool": "avg",
|
6 |
"pretrained_cfg": {
|
7 |
-
"tag": "
|
8 |
"custom_load": false,
|
9 |
"input_size": [
|
10 |
3,
|
|
|
4 |
"num_features": 512,
|
5 |
"global_pool": "avg",
|
6 |
"pretrained_cfg": {
|
7 |
+
"tag": "sw_in12k_ft_in1k",
|
8 |
"custom_load": false,
|
9 |
"input_size": [
|
10 |
3,
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d7a9d530dfc6a6d0dd34139f8badec95f833b10e07a8a751dee45d5bc7f53b4
|
3 |
+
size 156115396
|