Update model config and README
Browse files- README.md +9 -9
- config.json +1 -1
README.md
CHANGED
@@ -19,9 +19,9 @@ A collection of hparams (timm .yaml config files) for this training series can b
|
|
19 |
- **Model Type:** Image classification / feature backbone
|
20 |
- **Model Stats:**
|
21 |
- Params (M): 21.8
|
22 |
-
- GMACs:
|
23 |
-
- Activations (M):
|
24 |
-
- Image size: train = 384 x
|
25 |
- **Dataset:** ImageNet-1k
|
26 |
- **Papers:**
|
27 |
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
@@ -78,11 +78,11 @@ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batc
|
|
78 |
for o in output:
|
79 |
# print shape of each feature map in output
|
80 |
# e.g.:
|
81 |
-
# torch.Size([1, 64, 192,
|
82 |
-
# torch.Size([1, 64, 96,
|
83 |
-
# torch.Size([1, 128, 48,
|
84 |
-
# torch.Size([1, 256, 24,
|
85 |
-
# torch.Size([1, 512, 12,
|
86 |
|
87 |
print(o.shape)
|
88 |
```
|
@@ -113,7 +113,7 @@ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_featu
|
|
113 |
# or equivalently (without needing to set num_classes=0)
|
114 |
|
115 |
output = model.forward_features(transforms(img).unsqueeze(0))
|
116 |
-
# output is unpooled, a (1, 512, 12,
|
117 |
|
118 |
output = model.forward_head(output, pre_logits=True)
|
119 |
# output is a (1, num_features) shaped tensor
|
|
|
19 |
- **Model Type:** Image classification / feature backbone
|
20 |
- **Model Stats:**
|
21 |
- Params (M): 21.8
|
22 |
+
- GMACs: 11.5
|
23 |
+
- Activations (M): 13.3
|
24 |
+
- Image size: train = 384 x 384, test = 448 x 448
|
25 |
- **Dataset:** ImageNet-1k
|
26 |
- **Papers:**
|
27 |
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
|
|
78 |
for o in output:
|
79 |
# print shape of each feature map in output
|
80 |
# e.g.:
|
81 |
+
# torch.Size([1, 64, 192, 192])
|
82 |
+
# torch.Size([1, 64, 96, 96])
|
83 |
+
# torch.Size([1, 128, 48, 48])
|
84 |
+
# torch.Size([1, 256, 24, 24])
|
85 |
+
# torch.Size([1, 512, 12, 12])
|
86 |
|
87 |
print(o.shape)
|
88 |
```
|
|
|
113 |
# or equivalently (without needing to set num_classes=0)
|
114 |
|
115 |
output = model.forward_features(transforms(img).unsqueeze(0))
|
116 |
+
# output is unpooled, a (1, 512, 12, 12) shaped tensor
|
117 |
|
118 |
output = model.forward_head(output, pre_logits=True)
|
119 |
# output is a (1, num_features) shaped tensor
|
config.json
CHANGED
@@ -8,7 +8,7 @@
|
|
8 |
"input_size": [
|
9 |
3,
|
10 |
384,
|
11 |
-
|
12 |
],
|
13 |
"test_input_size": [
|
14 |
3,
|
|
|
8 |
"input_size": [
|
9 |
3,
|
10 |
384,
|
11 |
+
384
|
12 |
],
|
13 |
"test_input_size": [
|
14 |
3,
|