timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
88da355
1 Parent(s): 74980ab
Files changed (4) hide show
  1. README.md +125 -0
  2. config.json +33 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for pit_s_224.in1k
11
+
12
+ A PiT (Pooling based Vision Transformer) image classification model. Trained on ImageNet-1k by paper authors.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 23.5
18
+ - GMACs: 2.9
19
+ - Activations (M): 11.6
20
+ - Image size: 224 x 224
21
+ - **Papers:**
22
+ - Rethinking Spatial Dimensions of Vision Transformers: https://arxiv.org/abs/2103.16302
23
+ - **Dataset:** ImageNet-1k
24
+ - **Original:** https://github.com/naver-ai/pit
25
+
26
+ ## Model Usage
27
+ ### Image Classification
28
+ ```python
29
+ from urllib.request import urlopen
30
+ from PIL import Image
31
+ import timm
32
+
33
+ img = Image.open(urlopen(
34
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ ))
36
+
37
+ model = timm.create_model('pit_s_224.in1k', pretrained=True)
38
+ model = model.eval()
39
+
40
+ # get model specific transforms (normalization, resize)
41
+ data_config = timm.data.resolve_model_data_config(model)
42
+ transforms = timm.data.create_transform(**data_config, is_training=False)
43
+
44
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
45
+
46
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
47
+ ```
48
+
49
+ ### Feature Map Extraction
50
+ ```python
51
+ from urllib.request import urlopen
52
+ from PIL import Image
53
+ import timm
54
+
55
+ img = Image.open(urlopen(
56
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
57
+ ))
58
+
59
+ model = timm.create_model(
60
+ 'pit_s_224.in1k',
61
+ pretrained=True,
62
+ features_only=True,
63
+ )
64
+ model = model.eval()
65
+
66
+ # get model specific transforms (normalization, resize)
67
+ data_config = timm.data.resolve_model_data_config(model)
68
+ transforms = timm.data.create_transform(**data_config, is_training=False)
69
+
70
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
71
+
72
+ for o in output:
73
+ # print shape of each feature map in output
74
+ # e.g.:
75
+ # torch.Size([1, 144, 27, 27])
76
+ # torch.Size([1, 288, 14, 14])
77
+ # torch.Size([1, 576, 7, 7])
78
+
79
+ print(o.shape)
80
+ ```
81
+
82
+ ### Image Embeddings
83
+ ```python
84
+ from urllib.request import urlopen
85
+ from PIL import Image
86
+ import timm
87
+
88
+ img = Image.open(urlopen(
89
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
90
+ ))
91
+
92
+ model = timm.create_model(
93
+ 'pit_s_224.in1k',
94
+ pretrained=True,
95
+ num_classes=0, # remove classifier nn.Linear
96
+ )
97
+ model = model.eval()
98
+
99
+ # get model specific transforms (normalization, resize)
100
+ data_config = timm.data.resolve_model_data_config(model)
101
+ transforms = timm.data.create_transform(**data_config, is_training=False)
102
+
103
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
104
+
105
+ # or equivalently (without needing to set num_classes=0)
106
+
107
+ output = model.forward_features(transforms(img).unsqueeze(0))
108
+ # output is unpooled, a (1, 1, 576) shaped tensor
109
+
110
+ output = model.forward_head(output, pre_logits=True)
111
+ # output is a (1, num_features) shaped tensor
112
+ ```
113
+
114
+ ## Model Comparison
115
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
116
+
117
+ ## Citation
118
+ ```bibtex
119
+ @inproceedings{heo2021pit,
120
+ title={Rethinking Spatial Dimensions of Vision Transformers},
121
+ author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh},
122
+ booktitle = {International Conference on Computer Vision (ICCV)},
123
+ year={2021},
124
+ }
125
+ ```
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "pit_s_224",
3
+ "num_classes": 1000,
4
+ "num_features": 576,
5
+ "global_pool": "token",
6
+ "pretrained_cfg": {
7
+ "tag": "in1k",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 224,
12
+ 224
13
+ ],
14
+ "fixed_input_size": true,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 0.9,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.485,
20
+ 0.456,
21
+ 0.406
22
+ ],
23
+ "std": [
24
+ 0.229,
25
+ 0.224,
26
+ 0.225
27
+ ],
28
+ "num_classes": 1000,
29
+ "pool_size": null,
30
+ "first_conv": "patch_embed.conv",
31
+ "classifier": "head"
32
+ }
33
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6aeba8ea152ff6226e5a60a5e4f10b280848b101d91d4a37f07aa1e5c9ea6ac
3
+ size 93864336
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3415e19261f6cf3b1327e5687f5c8bd378adf326e3fccc3fe3b41ccbb2d03787
3
+ size 93912973