Add model
Browse files- README.md +137 -0
- config.json +41 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_name: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
---
|
10 |
+
# Model card for mobilenetv4_conv_large.e500_r256_in1k
|
11 |
+
|
12 |
+
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
|
13 |
+
|
14 |
+
Trained with `timm` scripts using hyper-parameters (mostly) similar to those in the paper.
|
15 |
+
|
16 |
+
NOTE: So far, these are the only known MNV4 weights. Official weights for Tensorflow models are unreleased.
|
17 |
+
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
- **Model Type:** Image classification / feature backbone
|
21 |
+
- **Model Stats:**
|
22 |
+
- Params (M): 32.6
|
23 |
+
- GMACs: 2.9
|
24 |
+
- Activations (M): 12.1
|
25 |
+
- Image size: train = 256 x 256, test = 320 x 320
|
26 |
+
- **Dataset:** ImageNet-1k
|
27 |
+
- **Papers:**
|
28 |
+
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518
|
29 |
+
- **Original:** https://github.com/tensorflow/models/tree/master/official/vision
|
30 |
+
|
31 |
+
## Model Usage
|
32 |
+
### Image Classification
|
33 |
+
```python
|
34 |
+
from urllib.request import urlopen
|
35 |
+
from PIL import Image
|
36 |
+
import timm
|
37 |
+
|
38 |
+
img = Image.open(urlopen(
|
39 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
40 |
+
))
|
41 |
+
|
42 |
+
model = timm.create_model('mobilenetv4_conv_large.e500_r256_in1k', pretrained=True)
|
43 |
+
model = model.eval()
|
44 |
+
|
45 |
+
# get model specific transforms (normalization, resize)
|
46 |
+
data_config = timm.data.resolve_model_data_config(model)
|
47 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
48 |
+
|
49 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
50 |
+
|
51 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
52 |
+
```
|
53 |
+
|
54 |
+
### Feature Map Extraction
|
55 |
+
```python
|
56 |
+
from urllib.request import urlopen
|
57 |
+
from PIL import Image
|
58 |
+
import timm
|
59 |
+
|
60 |
+
img = Image.open(urlopen(
|
61 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
62 |
+
))
|
63 |
+
|
64 |
+
model = timm.create_model(
|
65 |
+
'mobilenetv4_conv_large.e500_r256_in1k',
|
66 |
+
pretrained=True,
|
67 |
+
features_only=True,
|
68 |
+
)
|
69 |
+
model = model.eval()
|
70 |
+
|
71 |
+
# get model specific transforms (normalization, resize)
|
72 |
+
data_config = timm.data.resolve_model_data_config(model)
|
73 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
74 |
+
|
75 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
76 |
+
|
77 |
+
for o in output:
|
78 |
+
# print shape of each feature map in output
|
79 |
+
# e.g.:
|
80 |
+
# torch.Size([1, 24, 128, 128])
|
81 |
+
# torch.Size([1, 48, 64, 64])
|
82 |
+
# torch.Size([1, 96, 32, 32])
|
83 |
+
# torch.Size([1, 192, 16, 16])
|
84 |
+
# torch.Size([1, 960, 8, 8])
|
85 |
+
|
86 |
+
print(o.shape)
|
87 |
+
```
|
88 |
+
|
89 |
+
### Image Embeddings
|
90 |
+
```python
|
91 |
+
from urllib.request import urlopen
|
92 |
+
from PIL import Image
|
93 |
+
import timm
|
94 |
+
|
95 |
+
img = Image.open(urlopen(
|
96 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
97 |
+
))
|
98 |
+
|
99 |
+
model = timm.create_model(
|
100 |
+
'mobilenetv4_conv_large.e500_r256_in1k',
|
101 |
+
pretrained=True,
|
102 |
+
num_classes=0, # remove classifier nn.Linear
|
103 |
+
)
|
104 |
+
model = model.eval()
|
105 |
+
|
106 |
+
# get model specific transforms (normalization, resize)
|
107 |
+
data_config = timm.data.resolve_model_data_config(model)
|
108 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
109 |
+
|
110 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
111 |
+
|
112 |
+
# or equivalently (without needing to set num_classes=0)
|
113 |
+
|
114 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
115 |
+
# output is unpooled, a (1, 960, 8, 8) shaped tensor
|
116 |
+
|
117 |
+
output = model.forward_head(output, pre_logits=True)
|
118 |
+
# output is a (1, num_features) shaped tensor
|
119 |
+
```
|
120 |
+
|
121 |
+
## Model Comparison
|
122 |
+
### By Top-1
|
123 |
+
|
124 |
+
|model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|
125 |
+
|-------------------------------------------|------|--------|------|--------|-----------|--------|
|
126 |
+
|mobilenetv4_conv_large.e500_r256_in1k |82.674|17.326 |96.31 |3.69 |32.59 |320 |
|
127 |
+
|mobilenetv4_conv_large.e500_r256_in1k |81.862|18.138 |95.69 |4.31 |32.59 |256 |
|
128 |
+
|mobilenetv4_hybrid_medium.e500_r224_in1k |81.276|18.724 |95.742|4.258 |11.07 |256 |
|
129 |
+
|mobilenetv4_conv_medium.e500_r256_in1k |80.858|19.142 |95.768|4.232 |9.72 |320 |
|
130 |
+
|mobilenetv4_hybrid_medium.e500_r224_in1k |80.442|19.558 |95.38 |4.62 |11.07 |224 |
|
131 |
+
|mobilenetv4_conv_blur_medium.e500_r224_in1k|80.142|19.858 |95.298|4.702 |9.72 |256 |
|
132 |
+
|mobilenetv4_conv_medium.e500_r256_in1k |79.928|20.072 |95.184|4.816 |9.72 |256 |
|
133 |
+
|mobilenetv4_conv_medium.e500_r224_in1k |79.808|20.192 |95.186|4.814 |9.72 |256 |
|
134 |
+
|mobilenetv4_conv_blur_medium.e500_r224_in1k|79.438|20.562 |94.932|5.068 |9.72 |224 |
|
135 |
+
|mobilenetv4_conv_medium.e500_r224_in1k |79.094|20.906 |94.77 |5.23 |9.72 |224 |
|
136 |
+
|mobilenetv4_conv_small.e1200_r224_in1k |74.292|25.708 |92.116|7.884 |3.77 |256 |
|
137 |
+
|mobilenetv4_conv_small.e1200_r224_in1k |73.454|26.546 |91.34 |8.66 |3.77 |224 |
|
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "mobilenetv4_conv_large",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 960,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "e500_r256_in1k",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
256,
|
11 |
+
256
|
12 |
+
],
|
13 |
+
"test_input_size": [
|
14 |
+
3,
|
15 |
+
320,
|
16 |
+
320
|
17 |
+
],
|
18 |
+
"fixed_input_size": false,
|
19 |
+
"interpolation": "bicubic",
|
20 |
+
"crop_pct": 0.95,
|
21 |
+
"test_crop_pct": 1.0,
|
22 |
+
"crop_mode": "center",
|
23 |
+
"mean": [
|
24 |
+
0.485,
|
25 |
+
0.456,
|
26 |
+
0.406
|
27 |
+
],
|
28 |
+
"std": [
|
29 |
+
0.229,
|
30 |
+
0.224,
|
31 |
+
0.225
|
32 |
+
],
|
33 |
+
"num_classes": 1000,
|
34 |
+
"pool_size": [
|
35 |
+
8,
|
36 |
+
8
|
37 |
+
],
|
38 |
+
"first_conv": "conv_stem",
|
39 |
+
"classifier": "classifier"
|
40 |
+
}
|
41 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f86412962cd3360dab5759cbbc64495fefda68f7bae44b6b3142ac5853cb266
|
3 |
+
size 131022456
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:379afc94a57cb7cfc7bc48188b078477627f6d76811584cb7cbf7bbd5a8e667c
|
3 |
+
size 131184034
|