timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
5e5b5d7
1 Parent(s): 32ada8f
Files changed (4) hide show
  1. README.md +126 -0
  2. config.json +33 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for efficientvit_b2.r288_in1k
11
+
12
+ An EfficientViT (MIT) image classification model. Trained on ImageNet-1k by paper authors.
13
+
14
+ ## Model Details
15
+ - **Model Type:** Image classification / feature backbone
16
+ - **Model Stats:**
17
+ - Params (M): 24.3
18
+ - GMACs: 2.6
19
+ - Activations (M): 24.0
20
+ - Image size: 288 x 288
21
+ - **Papers:**
22
+ - EfficientViT: Lightweight Multi-Scale Attention for On-Device Semantic Segmentation: https://arxiv.org/abs/2205.14756
23
+ - **Dataset:** ImageNet-1k
24
+ - **Original:** https://github.com/mit-han-lab/efficientvit
25
+
26
+ ## Model Usage
27
+ ### Image Classification
28
+ ```python
29
+ from urllib.request import urlopen
30
+ from PIL import Image
31
+ import timm
32
+
33
+ img = Image.open(urlopen(
34
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
35
+ ))
36
+
37
+ model = timm.create_model('efficientvit_b2.r288_in1k', pretrained=True)
38
+ model = model.eval()
39
+
40
+ # get model specific transforms (normalization, resize)
41
+ data_config = timm.data.resolve_model_data_config(model)
42
+ transforms = timm.data.create_transform(**data_config, is_training=False)
43
+
44
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
45
+
46
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
47
+ ```
48
+
49
+ ### Feature Map Extraction
50
+ ```python
51
+ from urllib.request import urlopen
52
+ from PIL import Image
53
+ import timm
54
+
55
+ img = Image.open(urlopen(
56
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
57
+ ))
58
+
59
+ model = timm.create_model(
60
+ 'efficientvit_b2.r288_in1k',
61
+ pretrained=True,
62
+ features_only=True,
63
+ )
64
+ model = model.eval()
65
+
66
+ # get model specific transforms (normalization, resize)
67
+ data_config = timm.data.resolve_model_data_config(model)
68
+ transforms = timm.data.create_transform(**data_config, is_training=False)
69
+
70
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
71
+
72
+ for o in output:
73
+ # print shape of each feature map in output
74
+ # e.g.:
75
+ # torch.Size([1, 48, 72, 72])
76
+ # torch.Size([1, 96, 36, 36])
77
+ # torch.Size([1, 192, 18, 18])
78
+ # torch.Size([1, 384, 9, 9])
79
+
80
+ print(o.shape)
81
+ ```
82
+
83
+ ### Image Embeddings
84
+ ```python
85
+ from urllib.request import urlopen
86
+ from PIL import Image
87
+ import timm
88
+
89
+ img = Image.open(urlopen(
90
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
91
+ ))
92
+
93
+ model = timm.create_model(
94
+ 'efficientvit_b2.r288_in1k',
95
+ pretrained=True,
96
+ num_classes=0, # remove classifier nn.Linear
97
+ )
98
+ model = model.eval()
99
+
100
+ # get model specific transforms (normalization, resize)
101
+ data_config = timm.data.resolve_model_data_config(model)
102
+ transforms = timm.data.create_transform(**data_config, is_training=False)
103
+
104
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
105
+
106
+ # or equivalently (without needing to set num_classes=0)
107
+
108
+ output = model.forward_features(transforms(img).unsqueeze(0))
109
+ # output is unpooled, a (1, 384, 9, 9) shaped tensor
110
+
111
+ output = model.forward_head(output, pre_logits=True)
112
+ # output is a (1, num_features) shaped tensor
113
+ ```
114
+
115
+ ## Model Comparison
116
+ Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results).
117
+
118
+ ## Citation
119
+ ```bibtex
120
+ @article{cai2022efficientvit,
121
+ title={Efficientvit: Enhanced linear attention for high-resolution low-computation visual recognition},
122
+ author={Cai, Han and Gan, Chuang and Han, Song},
123
+ journal={arXiv preprint arXiv:2205.14756},
124
+ year={2022}
125
+ }
126
+ ```
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "efficientvit_b2",
3
+ "num_classes": 1000,
4
+ "num_features": 384,
5
+ "global_pool": "avg",
6
+ "pretrained_cfg": {
7
+ "tag": "r288_in1k",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 288,
12
+ 288
13
+ ],
14
+ "fixed_input_size": false,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 1.0,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.485,
20
+ 0.456,
21
+ 0.406
22
+ ],
23
+ "std": [
24
+ 0.229,
25
+ 0.224,
26
+ 0.225
27
+ ],
28
+ "num_classes": 1000,
29
+ "pool_size": null,
30
+ "first_conv": "stem.in_conv.conv",
31
+ "classifier": "head.classifier.4"
32
+ }
33
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5726851b5c55fab49f8302a79c3a898814e11bc20df76cc23cab28ae15c7328
3
+ size 97473592
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de1b1add1542634dba2e88ffed1d2591444a566a7cdcb9d353fa79fc1955f3c4
3
+ size 97589121