Update model config and README
Browse files- README.md +21 -17
- model.safetensors +3 -0
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
-
|
6 |
license: apache-2.0
|
7 |
datasets:
|
8 |
- imagenet-1k
|
@@ -13,7 +13,7 @@ A timm specific CoAtNet image classification model. Trained in `timm` on ImageNe
|
|
13 |
|
14 |
ImageNet-1k training done on TPUs thanks to support of the [TRC](https://sites.research.google/trc/about/) program.
|
15 |
|
16 |
-
### Model Variants in [maxxvit.py](https://github.com/
|
17 |
|
18 |
MaxxViT covers a number of related model architectures that share a common structure including:
|
19 |
- CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
|
@@ -43,8 +43,9 @@ from urllib.request import urlopen
|
|
43 |
from PIL import Image
|
44 |
import timm
|
45 |
|
46 |
-
img = Image.open(
|
47 |
-
|
|
|
48 |
|
49 |
model = timm.create_model('coatnet_nano_rw_224.sw_in1k', pretrained=True)
|
50 |
model = model.eval()
|
@@ -64,8 +65,9 @@ from urllib.request import urlopen
|
|
64 |
from PIL import Image
|
65 |
import timm
|
66 |
|
67 |
-
img = Image.open(
|
68 |
-
|
|
|
69 |
|
70 |
model = timm.create_model(
|
71 |
'coatnet_nano_rw_224.sw_in1k',
|
@@ -82,12 +84,13 @@ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batc
|
|
82 |
|
83 |
for o in output:
|
84 |
# print shape of each feature map in output
|
85 |
-
# e.g.:
|
86 |
-
# torch.Size([1,
|
87 |
-
# torch.Size([1,
|
88 |
-
# torch.Size([1,
|
89 |
-
# torch.Size([1,
|
90 |
-
# torch.Size([1,
|
|
|
91 |
print(o.shape)
|
92 |
```
|
93 |
|
@@ -97,8 +100,9 @@ from urllib.request import urlopen
|
|
97 |
from PIL import Image
|
98 |
import timm
|
99 |
|
100 |
-
img = Image.open(
|
101 |
-
|
|
|
102 |
|
103 |
model = timm.create_model(
|
104 |
'coatnet_nano_rw_224.sw_in1k',
|
@@ -116,10 +120,10 @@ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_featu
|
|
116 |
# or equivalently (without needing to set num_classes=0)
|
117 |
|
118 |
output = model.forward_features(transforms(img).unsqueeze(0))
|
119 |
-
# output is unpooled
|
120 |
|
121 |
output = model.forward_head(output, pre_logits=True)
|
122 |
-
# output is (
|
123 |
```
|
124 |
|
125 |
## Model Comparison
|
@@ -227,7 +231,7 @@ output = model.forward_head(output, pre_logits=True)
|
|
227 |
publisher = {GitHub},
|
228 |
journal = {GitHub repository},
|
229 |
doi = {10.5281/zenodo.4414861},
|
230 |
-
howpublished = {\url{https://github.com/
|
231 |
}
|
232 |
```
|
233 |
```bibtex
|
|
|
2 |
tags:
|
3 |
- image-classification
|
4 |
- timm
|
5 |
+
library_name: timm
|
6 |
license: apache-2.0
|
7 |
datasets:
|
8 |
- imagenet-1k
|
|
|
13 |
|
14 |
ImageNet-1k training done on TPUs thanks to support of the [TRC](https://sites.research.google/trc/about/) program.
|
15 |
|
16 |
+
### Model Variants in [maxxvit.py](https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/maxxvit.py)
|
17 |
|
18 |
MaxxViT covers a number of related model architectures that share a common structure including:
|
19 |
- CoAtNet - Combining MBConv (depthwise-separable) convolutional blocks in early stages with self-attention transformer blocks in later stages.
|
|
|
43 |
from PIL import Image
|
44 |
import timm
|
45 |
|
46 |
+
img = Image.open(urlopen(
|
47 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
48 |
+
))
|
49 |
|
50 |
model = timm.create_model('coatnet_nano_rw_224.sw_in1k', pretrained=True)
|
51 |
model = model.eval()
|
|
|
65 |
from PIL import Image
|
66 |
import timm
|
67 |
|
68 |
+
img = Image.open(urlopen(
|
69 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
70 |
+
))
|
71 |
|
72 |
model = timm.create_model(
|
73 |
'coatnet_nano_rw_224.sw_in1k',
|
|
|
84 |
|
85 |
for o in output:
|
86 |
# print shape of each feature map in output
|
87 |
+
# e.g.:
|
88 |
+
# torch.Size([1, 64, 112, 112])
|
89 |
+
# torch.Size([1, 64, 56, 56])
|
90 |
+
# torch.Size([1, 128, 28, 28])
|
91 |
+
# torch.Size([1, 256, 14, 14])
|
92 |
+
# torch.Size([1, 512, 7, 7])
|
93 |
+
|
94 |
print(o.shape)
|
95 |
```
|
96 |
|
|
|
100 |
from PIL import Image
|
101 |
import timm
|
102 |
|
103 |
+
img = Image.open(urlopen(
|
104 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
105 |
+
))
|
106 |
|
107 |
model = timm.create_model(
|
108 |
'coatnet_nano_rw_224.sw_in1k',
|
|
|
120 |
# or equivalently (without needing to set num_classes=0)
|
121 |
|
122 |
output = model.forward_features(transforms(img).unsqueeze(0))
|
123 |
+
# output is unpooled, a (1, 512, 7, 7) shaped tensor
|
124 |
|
125 |
output = model.forward_head(output, pre_logits=True)
|
126 |
+
# output is a (1, num_features) shaped tensor
|
127 |
```
|
128 |
|
129 |
## Model Comparison
|
|
|
231 |
publisher = {GitHub},
|
232 |
journal = {GitHub repository},
|
233 |
doi = {10.5281/zenodo.4414861},
|
234 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
235 |
}
|
236 |
```
|
237 |
```bibtex
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:555f9ea6286c8c2aed425a96fd6f2b00308e3974e318b6daf3918e81c1838a6e
|
3 |
+
size 60641304
|