tim1900 commited on
Commit
dd1fb73
·
verified ·
1 Parent(s): 763f7e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -1
README.md CHANGED
@@ -23,7 +23,7 @@ widget:
23
  cvx-coder aims to improve the Matlab [CVX](https://cvxr.com/cvx) code ability and QA ability of LLMs. It is a [phi-3 model](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) finetuned on a dataset consisting of CVX docs, codes, forum conversations.
24
 
25
  ## Quickstart
26
- Run the following:
27
  ```python
28
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
29
  m_path="tim1900/cvx-coder"
@@ -51,4 +51,42 @@ messages = [
51
  ]
52
  output = pipe(messages, **generation_args)
53
  print(output[0]['generated_text'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  ```
 
23
  cvx-coder aims to improve the Matlab [CVX](https://cvxr.com/cvx) code ability and QA ability of LLMs. It is a [phi-3 model](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) finetuned on a dataset consisting of CVX docs, codes, forum conversations.
24
 
25
  ## Quickstart
26
+ For one quick test, run the following:
27
  ```python
28
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
29
  m_path="tim1900/cvx-coder"
 
51
  ]
52
  output = pipe(messages, **generation_args)
53
  print(output[0]['generated_text'])
54
+ ```
55
+ For the chat mode in web, run the following:
56
+ ```python
57
+ import gradio as gr
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
59
+ m_path="tim1900/cvx-coder"
60
+ model = AutoModelForCausalLM.from_pretrained(
61
+ m_path,
62
+ device_map="auto",
63
+ torch_dtype="auto",
64
+ trust_remote_code=True,
65
+ )
66
+ tokenizer = AutoTokenizer.from_pretrained(m_path)
67
+ pipe = pipeline(
68
+ "text-generation",
69
+ model=model,
70
+ tokenizer=tokenizer,
71
+ )
72
+ generation_args = {
73
+ "max_new_tokens": 2000,
74
+ "return_full_text": False,
75
+ "temperature": 0,
76
+ "do_sample": False,
77
+ }
78
+
79
+ def assistant_talk(message, history):
80
+ message=[
81
+ {"role": "user", "content": message},
82
+ ]
83
+ temp=[]
84
+ for i in history:
85
+ temp+=[{"role": "user", "content": i[0]},{"role": "assistant", "content": i[1]}]
86
+
87
+ messages =temp + message
88
+
89
+ output = pipe(messages, **generation_args)
90
+ return output[0]['generated_text']
91
+ gr.ChatInterface(assistant_talk).launch()
92
  ```