Nguyen Tien
commited on
Commit
·
3f1a536
1
Parent(s):
ae6dac8
Model save
Browse files- README.md +118 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: Visual-Attention-Network/van-tiny
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- recall
|
11 |
+
- precision
|
12 |
+
model-index:
|
13 |
+
- name: teacher-status-van-tiny-256-1-2
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.9664218258132214
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9737704918032787
|
31 |
+
- name: Precision
|
32 |
+
type: precision
|
33 |
+
value: 0.9737704918032787
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# teacher-status-van-tiny-256-1-2
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [Visual-Attention-Network/van-tiny](https://huggingface.co/Visual-Attention-Network/van-tiny) on the imagefolder dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.0858
|
44 |
+
- Accuracy: 0.9664
|
45 |
+
- F1 Score: 0.9738
|
46 |
+
- Recall: 0.9738
|
47 |
+
- Precision: 0.9738
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 5e-05
|
67 |
+
- train_batch_size: 128
|
68 |
+
- eval_batch_size: 128
|
69 |
+
- seed: 42
|
70 |
+
- gradient_accumulation_steps: 2
|
71 |
+
- total_train_batch_size: 256
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- lr_scheduler_warmup_ratio: 0.1
|
75 |
+
- num_epochs: 30
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:|
|
81 |
+
| 0.6722 | 0.99 | 33 | 0.6499 | 0.6401 | 0.7806 | 1.0 | 0.6401 |
|
82 |
+
| 0.5431 | 2.0 | 67 | 0.4164 | 0.7817 | 0.8531 | 0.9902 | 0.7494 |
|
83 |
+
| 0.393 | 2.99 | 100 | 0.2833 | 0.8877 | 0.9078 | 0.8639 | 0.9564 |
|
84 |
+
| 0.354 | 4.0 | 134 | 0.1930 | 0.9276 | 0.9436 | 0.9459 | 0.9413 |
|
85 |
+
| 0.3007 | 4.99 | 167 | 0.1585 | 0.9370 | 0.9511 | 0.9557 | 0.9464 |
|
86 |
+
| 0.2898 | 6.0 | 201 | 0.1445 | 0.9465 | 0.9581 | 0.9557 | 0.9605 |
|
87 |
+
| 0.2824 | 6.99 | 234 | 0.1353 | 0.9465 | 0.9580 | 0.9525 | 0.9635 |
|
88 |
+
| 0.2763 | 8.0 | 268 | 0.1359 | 0.9486 | 0.9603 | 0.9721 | 0.9488 |
|
89 |
+
| 0.2473 | 8.99 | 301 | 0.1213 | 0.9570 | 0.9664 | 0.9672 | 0.9656 |
|
90 |
+
| 0.2598 | 10.0 | 335 | 0.1091 | 0.9570 | 0.9665 | 0.9705 | 0.9626 |
|
91 |
+
| 0.2476 | 10.99 | 368 | 0.1041 | 0.9633 | 0.9714 | 0.9754 | 0.9675 |
|
92 |
+
| 0.2376 | 12.0 | 402 | 0.0997 | 0.9601 | 0.9686 | 0.9623 | 0.9751 |
|
93 |
+
| 0.2402 | 12.99 | 435 | 0.0972 | 0.9622 | 0.9704 | 0.9672 | 0.9736 |
|
94 |
+
| 0.2324 | 14.0 | 469 | 0.0950 | 0.9664 | 0.9739 | 0.9803 | 0.9676 |
|
95 |
+
| 0.2256 | 14.99 | 502 | 0.0909 | 0.9706 | 0.9770 | 0.9754 | 0.9786 |
|
96 |
+
| 0.21 | 16.0 | 536 | 0.0922 | 0.9622 | 0.9703 | 0.9656 | 0.9752 |
|
97 |
+
| 0.217 | 16.99 | 569 | 0.0933 | 0.9612 | 0.9695 | 0.9656 | 0.9736 |
|
98 |
+
| 0.2092 | 18.0 | 603 | 0.0891 | 0.9664 | 0.9738 | 0.9754 | 0.9722 |
|
99 |
+
| 0.2063 | 18.99 | 636 | 0.0913 | 0.9654 | 0.9730 | 0.9738 | 0.9722 |
|
100 |
+
| 0.2217 | 20.0 | 670 | 0.0917 | 0.9643 | 0.9720 | 0.9672 | 0.9768 |
|
101 |
+
| 0.1952 | 20.99 | 703 | 0.0859 | 0.9717 | 0.9778 | 0.9754 | 0.9802 |
|
102 |
+
| 0.2068 | 22.0 | 737 | 0.0907 | 0.9685 | 0.9755 | 0.9770 | 0.9739 |
|
103 |
+
| 0.1914 | 22.99 | 770 | 0.0847 | 0.9696 | 0.9763 | 0.9787 | 0.9739 |
|
104 |
+
| 0.1961 | 24.0 | 804 | 0.0870 | 0.9685 | 0.9755 | 0.9770 | 0.9739 |
|
105 |
+
| 0.1911 | 24.99 | 837 | 0.0884 | 0.9664 | 0.9739 | 0.9770 | 0.9707 |
|
106 |
+
| 0.1961 | 26.0 | 871 | 0.0870 | 0.9685 | 0.9754 | 0.9738 | 0.9770 |
|
107 |
+
| 0.1978 | 26.99 | 904 | 0.0871 | 0.9685 | 0.9754 | 0.9754 | 0.9754 |
|
108 |
+
| 0.1854 | 28.0 | 938 | 0.0858 | 0.9685 | 0.9755 | 0.9770 | 0.9739 |
|
109 |
+
| 0.1733 | 28.99 | 971 | 0.0860 | 0.9685 | 0.9754 | 0.9738 | 0.9770 |
|
110 |
+
| 0.1762 | 29.55 | 990 | 0.0858 | 0.9664 | 0.9738 | 0.9738 | 0.9738 |
|
111 |
+
|
112 |
+
|
113 |
+
### Framework versions
|
114 |
+
|
115 |
+
- Transformers 4.36.2
|
116 |
+
- Pytorch 2.1.0+cu121
|
117 |
+
- Datasets 2.16.1
|
118 |
+
- Tokenizers 0.15.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 15480696
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b792af51f35f5f2a5ac24103db0f48866b18d0a9f081dd382de92815b23a15d3
|
3 |
size 15480696
|