tiagomosantos's picture
w2v-bert-2.0-pt_pt_v2
3b3cd95 verified
|
raw
history blame
2.66 kB
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-pt_pt_v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: pt
          split: validation
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 0.08315087821729188

w2v-bert-2.0-pt_pt_v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1282
  • Wer: 0.0832
  • Cer: 0.0224
  • Bert Score: 0.9739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bert Score
1.2735 1.0 678 0.2292 0.1589 0.0415 0.9498
0.1715 2.0 1356 0.1762 0.1283 0.0344 0.9599
0.1158 3.0 2034 0.1539 0.1100 0.0298 0.9646
0.0821 4.0 2712 0.1362 0.0949 0.0258 0.9703
0.0605 5.0 3390 0.1349 0.0860 0.0236 0.9728
0.0475 6.0 4068 0.1395 0.0871 0.0239 0.9728
0.0355 7.0 4746 0.1487 0.0837 0.0230 0.9739
0.0309 8.0 5424 0.1452 0.0873 0.0240 0.9728
0.0308 9.0 6102 0.1390 0.0843 0.0228 0.9735
0.0239 10.0 6780 0.1282 0.0832 0.0224 0.9739

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2