|
--- |
|
tags: |
|
- mteb |
|
model-index: |
|
- name: ALL_862873 |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 50.805970149253746 |
|
- type: ap |
|
value: 21.350961103104364 |
|
- type: f1 |
|
value: 46.546166439875044 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 52.567125000000004 |
|
- type: ap |
|
value: 51.37893936391345 |
|
- type: f1 |
|
value: 51.8411977908125 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 22.63 |
|
- type: f1 |
|
value: 21.964526516204575 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.991 |
|
- type: map_at_10 |
|
value: 4.095 |
|
- type: map_at_100 |
|
value: 4.763 |
|
- type: map_at_1000 |
|
value: 4.8759999999999994 |
|
- type: map_at_3 |
|
value: 3.3070000000000004 |
|
- type: map_at_5 |
|
value: 3.73 |
|
- type: mrr_at_1 |
|
value: 2.0629999999999997 |
|
- type: mrr_at_10 |
|
value: 4.119 |
|
- type: mrr_at_100 |
|
value: 4.787 |
|
- type: mrr_at_1000 |
|
value: 4.9 |
|
- type: mrr_at_3 |
|
value: 3.331 |
|
- type: mrr_at_5 |
|
value: 3.768 |
|
- type: ndcg_at_1 |
|
value: 1.991 |
|
- type: ndcg_at_10 |
|
value: 5.346 |
|
- type: ndcg_at_100 |
|
value: 9.181000000000001 |
|
- type: ndcg_at_1000 |
|
value: 13.004 |
|
- type: ndcg_at_3 |
|
value: 3.7199999999999998 |
|
- type: ndcg_at_5 |
|
value: 4.482 |
|
- type: precision_at_1 |
|
value: 1.991 |
|
- type: precision_at_10 |
|
value: 0.9390000000000001 |
|
- type: precision_at_100 |
|
value: 0.28700000000000003 |
|
- type: precision_at_1000 |
|
value: 0.061 |
|
- type: precision_at_3 |
|
value: 1.636 |
|
- type: precision_at_5 |
|
value: 1.351 |
|
- type: recall_at_1 |
|
value: 1.991 |
|
- type: recall_at_10 |
|
value: 9.388 |
|
- type: recall_at_100 |
|
value: 28.663 |
|
- type: recall_at_1000 |
|
value: 60.597 |
|
- type: recall_at_3 |
|
value: 4.9079999999999995 |
|
- type: recall_at_5 |
|
value: 6.757000000000001 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 14.790995349964428 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 12.248406292959412 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 44.88116875696166 |
|
- type: mrr |
|
value: 56.07439651760981 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 19.26573437410263 |
|
- type: cos_sim_spearman |
|
value: 21.34145013484056 |
|
- type: euclidean_pearson |
|
value: 22.39226418475093 |
|
- type: euclidean_spearman |
|
value: 23.511981519581447 |
|
- type: manhattan_pearson |
|
value: 22.14346931904813 |
|
- type: manhattan_spearman |
|
value: 23.39390654000631 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 36.42857142857143 |
|
- type: f1 |
|
value: 34.81640976406094 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 13.94296328377691 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 9.790764523161606 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.968 |
|
- type: map_at_10 |
|
value: 2.106 |
|
- type: map_at_100 |
|
value: 2.411 |
|
- type: map_at_1000 |
|
value: 2.4899999999999998 |
|
- type: map_at_3 |
|
value: 1.797 |
|
- type: map_at_5 |
|
value: 1.9959999999999998 |
|
- type: mrr_at_1 |
|
value: 1.717 |
|
- type: mrr_at_10 |
|
value: 3.0349999999999997 |
|
- type: mrr_at_100 |
|
value: 3.4029999999999996 |
|
- type: mrr_at_1000 |
|
value: 3.486 |
|
- type: mrr_at_3 |
|
value: 2.6470000000000002 |
|
- type: mrr_at_5 |
|
value: 2.876 |
|
- type: ndcg_at_1 |
|
value: 1.717 |
|
- type: ndcg_at_10 |
|
value: 2.9059999999999997 |
|
- type: ndcg_at_100 |
|
value: 4.715 |
|
- type: ndcg_at_1000 |
|
value: 7.318 |
|
- type: ndcg_at_3 |
|
value: 2.415 |
|
- type: ndcg_at_5 |
|
value: 2.682 |
|
- type: precision_at_1 |
|
value: 1.717 |
|
- type: precision_at_10 |
|
value: 0.658 |
|
- type: precision_at_100 |
|
value: 0.197 |
|
- type: precision_at_1000 |
|
value: 0.054 |
|
- type: precision_at_3 |
|
value: 1.431 |
|
- type: precision_at_5 |
|
value: 1.059 |
|
- type: recall_at_1 |
|
value: 0.968 |
|
- type: recall_at_10 |
|
value: 4.531000000000001 |
|
- type: recall_at_100 |
|
value: 13.081000000000001 |
|
- type: recall_at_1000 |
|
value: 32.443 |
|
- type: recall_at_3 |
|
value: 2.8850000000000002 |
|
- type: recall_at_5 |
|
value: 3.768 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.9390000000000001 |
|
- type: map_at_10 |
|
value: 1.516 |
|
- type: map_at_100 |
|
value: 1.6680000000000001 |
|
- type: map_at_1000 |
|
value: 1.701 |
|
- type: map_at_3 |
|
value: 1.314 |
|
- type: map_at_5 |
|
value: 1.388 |
|
- type: mrr_at_1 |
|
value: 1.146 |
|
- type: mrr_at_10 |
|
value: 1.96 |
|
- type: mrr_at_100 |
|
value: 2.166 |
|
- type: mrr_at_1000 |
|
value: 2.207 |
|
- type: mrr_at_3 |
|
value: 1.72 |
|
- type: mrr_at_5 |
|
value: 1.796 |
|
- type: ndcg_at_1 |
|
value: 1.146 |
|
- type: ndcg_at_10 |
|
value: 1.9769999999999999 |
|
- type: ndcg_at_100 |
|
value: 2.8400000000000003 |
|
- type: ndcg_at_1000 |
|
value: 4.035 |
|
- type: ndcg_at_3 |
|
value: 1.5859999999999999 |
|
- type: ndcg_at_5 |
|
value: 1.6709999999999998 |
|
- type: precision_at_1 |
|
value: 1.146 |
|
- type: precision_at_10 |
|
value: 0.43299999999999994 |
|
- type: precision_at_100 |
|
value: 0.11100000000000002 |
|
- type: precision_at_1000 |
|
value: 0.027999999999999997 |
|
- type: precision_at_3 |
|
value: 0.8699999999999999 |
|
- type: precision_at_5 |
|
value: 0.611 |
|
- type: recall_at_1 |
|
value: 0.9390000000000001 |
|
- type: recall_at_10 |
|
value: 2.949 |
|
- type: recall_at_100 |
|
value: 6.737 |
|
- type: recall_at_1000 |
|
value: 15.604999999999999 |
|
- type: recall_at_3 |
|
value: 1.846 |
|
- type: recall_at_5 |
|
value: 2.08 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.28 |
|
- type: map_at_10 |
|
value: 2.157 |
|
- type: map_at_100 |
|
value: 2.401 |
|
- type: map_at_1000 |
|
value: 2.4570000000000003 |
|
- type: map_at_3 |
|
value: 1.865 |
|
- type: map_at_5 |
|
value: 1.928 |
|
- type: mrr_at_1 |
|
value: 1.505 |
|
- type: mrr_at_10 |
|
value: 2.52 |
|
- type: mrr_at_100 |
|
value: 2.782 |
|
- type: mrr_at_1000 |
|
value: 2.8400000000000003 |
|
- type: mrr_at_3 |
|
value: 2.1839999999999997 |
|
- type: mrr_at_5 |
|
value: 2.2689999999999997 |
|
- type: ndcg_at_1 |
|
value: 1.505 |
|
- type: ndcg_at_10 |
|
value: 2.798 |
|
- type: ndcg_at_100 |
|
value: 4.2090000000000005 |
|
- type: ndcg_at_1000 |
|
value: 6.105 |
|
- type: ndcg_at_3 |
|
value: 2.157 |
|
- type: ndcg_at_5 |
|
value: 2.258 |
|
- type: precision_at_1 |
|
value: 1.505 |
|
- type: precision_at_10 |
|
value: 0.5519999999999999 |
|
- type: precision_at_100 |
|
value: 0.146 |
|
- type: precision_at_1000 |
|
value: 0.034999999999999996 |
|
- type: precision_at_3 |
|
value: 1.024 |
|
- type: precision_at_5 |
|
value: 0.7020000000000001 |
|
- type: recall_at_1 |
|
value: 1.28 |
|
- type: recall_at_10 |
|
value: 4.455 |
|
- type: recall_at_100 |
|
value: 11.169 |
|
- type: recall_at_1000 |
|
value: 26.046000000000003 |
|
- type: recall_at_3 |
|
value: 2.6270000000000002 |
|
- type: recall_at_5 |
|
value: 2.899 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.264 |
|
- type: map_at_10 |
|
value: 0.615 |
|
- type: map_at_100 |
|
value: 0.76 |
|
- type: map_at_1000 |
|
value: 0.803 |
|
- type: map_at_3 |
|
value: 0.40499999999999997 |
|
- type: map_at_5 |
|
value: 0.512 |
|
- type: mrr_at_1 |
|
value: 0.33899999999999997 |
|
- type: mrr_at_10 |
|
value: 0.718 |
|
- type: mrr_at_100 |
|
value: 0.8880000000000001 |
|
- type: mrr_at_1000 |
|
value: 0.935 |
|
- type: mrr_at_3 |
|
value: 0.508 |
|
- type: mrr_at_5 |
|
value: 0.616 |
|
- type: ndcg_at_1 |
|
value: 0.33899999999999997 |
|
- type: ndcg_at_10 |
|
value: 0.9079999999999999 |
|
- type: ndcg_at_100 |
|
value: 1.9029999999999998 |
|
- type: ndcg_at_1000 |
|
value: 3.4939999999999998 |
|
- type: ndcg_at_3 |
|
value: 0.46499999999999997 |
|
- type: ndcg_at_5 |
|
value: 0.655 |
|
- type: precision_at_1 |
|
value: 0.33899999999999997 |
|
- type: precision_at_10 |
|
value: 0.192 |
|
- type: precision_at_100 |
|
value: 0.079 |
|
- type: precision_at_1000 |
|
value: 0.023 |
|
- type: precision_at_3 |
|
value: 0.22599999999999998 |
|
- type: precision_at_5 |
|
value: 0.22599999999999998 |
|
- type: recall_at_1 |
|
value: 0.264 |
|
- type: recall_at_10 |
|
value: 1.789 |
|
- type: recall_at_100 |
|
value: 6.927 |
|
- type: recall_at_1000 |
|
value: 19.922 |
|
- type: recall_at_3 |
|
value: 0.5459999999999999 |
|
- type: recall_at_5 |
|
value: 0.9979999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.5599999999999999 |
|
- type: map_at_10 |
|
value: 0.9129999999999999 |
|
- type: map_at_100 |
|
value: 1.027 |
|
- type: map_at_1000 |
|
value: 1.072 |
|
- type: map_at_3 |
|
value: 0.715 |
|
- type: map_at_5 |
|
value: 0.826 |
|
- type: mrr_at_1 |
|
value: 0.8710000000000001 |
|
- type: mrr_at_10 |
|
value: 1.331 |
|
- type: mrr_at_100 |
|
value: 1.494 |
|
- type: mrr_at_1000 |
|
value: 1.547 |
|
- type: mrr_at_3 |
|
value: 1.119 |
|
- type: mrr_at_5 |
|
value: 1.269 |
|
- type: ndcg_at_1 |
|
value: 0.8710000000000001 |
|
- type: ndcg_at_10 |
|
value: 1.2590000000000001 |
|
- type: ndcg_at_100 |
|
value: 2.023 |
|
- type: ndcg_at_1000 |
|
value: 3.737 |
|
- type: ndcg_at_3 |
|
value: 0.8750000000000001 |
|
- type: ndcg_at_5 |
|
value: 1.079 |
|
- type: precision_at_1 |
|
value: 0.8710000000000001 |
|
- type: precision_at_10 |
|
value: 0.28600000000000003 |
|
- type: precision_at_100 |
|
value: 0.086 |
|
- type: precision_at_1000 |
|
value: 0.027999999999999997 |
|
- type: precision_at_3 |
|
value: 0.498 |
|
- type: precision_at_5 |
|
value: 0.42300000000000004 |
|
- type: recall_at_1 |
|
value: 0.5599999999999999 |
|
- type: recall_at_10 |
|
value: 1.907 |
|
- type: recall_at_100 |
|
value: 5.492 |
|
- type: recall_at_1000 |
|
value: 18.974 |
|
- type: recall_at_3 |
|
value: 0.943 |
|
- type: recall_at_5 |
|
value: 1.41 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.9720000000000002 |
|
- type: map_at_10 |
|
value: 2.968 |
|
- type: map_at_100 |
|
value: 3.2009999999999996 |
|
- type: map_at_1000 |
|
value: 3.2680000000000002 |
|
- type: map_at_3 |
|
value: 2.683 |
|
- type: map_at_5 |
|
value: 2.8369999999999997 |
|
- type: mrr_at_1 |
|
value: 2.406 |
|
- type: mrr_at_10 |
|
value: 3.567 |
|
- type: mrr_at_100 |
|
value: 3.884 |
|
- type: mrr_at_1000 |
|
value: 3.948 |
|
- type: mrr_at_3 |
|
value: 3.2239999999999998 |
|
- type: mrr_at_5 |
|
value: 3.383 |
|
- type: ndcg_at_1 |
|
value: 2.406 |
|
- type: ndcg_at_10 |
|
value: 3.63 |
|
- type: ndcg_at_100 |
|
value: 5.155 |
|
- type: ndcg_at_1000 |
|
value: 7.381 |
|
- type: ndcg_at_3 |
|
value: 3.078 |
|
- type: ndcg_at_5 |
|
value: 3.3070000000000004 |
|
- type: precision_at_1 |
|
value: 2.406 |
|
- type: precision_at_10 |
|
value: 0.635 |
|
- type: precision_at_100 |
|
value: 0.184 |
|
- type: precision_at_1000 |
|
value: 0.048 |
|
- type: precision_at_3 |
|
value: 1.4120000000000001 |
|
- type: precision_at_5 |
|
value: 1.001 |
|
- type: recall_at_1 |
|
value: 1.9720000000000002 |
|
- type: recall_at_10 |
|
value: 5.152 |
|
- type: recall_at_100 |
|
value: 12.173 |
|
- type: recall_at_1000 |
|
value: 28.811999999999998 |
|
- type: recall_at_3 |
|
value: 3.556 |
|
- type: recall_at_5 |
|
value: 4.181 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.346 |
|
- type: map_at_10 |
|
value: 0.619 |
|
- type: map_at_100 |
|
value: 0.743 |
|
- type: map_at_1000 |
|
value: 0.788 |
|
- type: map_at_3 |
|
value: 0.5369999999999999 |
|
- type: map_at_5 |
|
value: 0.551 |
|
- type: mrr_at_1 |
|
value: 0.571 |
|
- type: mrr_at_10 |
|
value: 1.0619999999999998 |
|
- type: mrr_at_100 |
|
value: 1.2109999999999999 |
|
- type: mrr_at_1000 |
|
value: 1.265 |
|
- type: mrr_at_3 |
|
value: 0.818 |
|
- type: mrr_at_5 |
|
value: 0.927 |
|
- type: ndcg_at_1 |
|
value: 0.571 |
|
- type: ndcg_at_10 |
|
value: 0.919 |
|
- type: ndcg_at_100 |
|
value: 1.688 |
|
- type: ndcg_at_1000 |
|
value: 3.3649999999999998 |
|
- type: ndcg_at_3 |
|
value: 0.6779999999999999 |
|
- type: ndcg_at_5 |
|
value: 0.7230000000000001 |
|
- type: precision_at_1 |
|
value: 0.571 |
|
- type: precision_at_10 |
|
value: 0.27399999999999997 |
|
- type: precision_at_100 |
|
value: 0.084 |
|
- type: precision_at_1000 |
|
value: 0.029 |
|
- type: precision_at_3 |
|
value: 0.381 |
|
- type: precision_at_5 |
|
value: 0.32 |
|
- type: recall_at_1 |
|
value: 0.346 |
|
- type: recall_at_10 |
|
value: 1.397 |
|
- type: recall_at_100 |
|
value: 5.079000000000001 |
|
- type: recall_at_1000 |
|
value: 18.060000000000002 |
|
- type: recall_at_3 |
|
value: 0.774 |
|
- type: recall_at_5 |
|
value: 0.8340000000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.69 |
|
- type: map_at_10 |
|
value: 0.897 |
|
- type: map_at_100 |
|
value: 1.0030000000000001 |
|
- type: map_at_1000 |
|
value: 1.034 |
|
- type: map_at_3 |
|
value: 0.818 |
|
- type: map_at_5 |
|
value: 0.864 |
|
- type: mrr_at_1 |
|
value: 0.767 |
|
- type: mrr_at_10 |
|
value: 1.008 |
|
- type: mrr_at_100 |
|
value: 1.145 |
|
- type: mrr_at_1000 |
|
value: 1.183 |
|
- type: mrr_at_3 |
|
value: 0.895 |
|
- type: mrr_at_5 |
|
value: 0.9560000000000001 |
|
- type: ndcg_at_1 |
|
value: 0.767 |
|
- type: ndcg_at_10 |
|
value: 1.0739999999999998 |
|
- type: ndcg_at_100 |
|
value: 1.757 |
|
- type: ndcg_at_1000 |
|
value: 2.9090000000000003 |
|
- type: ndcg_at_3 |
|
value: 0.881 |
|
- type: ndcg_at_5 |
|
value: 0.9769999999999999 |
|
- type: precision_at_1 |
|
value: 0.767 |
|
- type: precision_at_10 |
|
value: 0.184 |
|
- type: precision_at_100 |
|
value: 0.06 |
|
- type: precision_at_1000 |
|
value: 0.018000000000000002 |
|
- type: precision_at_3 |
|
value: 0.358 |
|
- type: precision_at_5 |
|
value: 0.27599999999999997 |
|
- type: recall_at_1 |
|
value: 0.69 |
|
- type: recall_at_10 |
|
value: 1.508 |
|
- type: recall_at_100 |
|
value: 4.858 |
|
- type: recall_at_1000 |
|
value: 14.007 |
|
- type: recall_at_3 |
|
value: 0.997 |
|
- type: recall_at_5 |
|
value: 1.2269999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.338 |
|
- type: map_at_10 |
|
value: 0.661 |
|
- type: map_at_100 |
|
value: 0.7969999999999999 |
|
- type: map_at_1000 |
|
value: 0.8290000000000001 |
|
- type: map_at_3 |
|
value: 0.5559999999999999 |
|
- type: map_at_5 |
|
value: 0.5910000000000001 |
|
- type: mrr_at_1 |
|
value: 0.482 |
|
- type: mrr_at_10 |
|
value: 0.88 |
|
- type: mrr_at_100 |
|
value: 1.036 |
|
- type: mrr_at_1000 |
|
value: 1.075 |
|
- type: mrr_at_3 |
|
value: 0.74 |
|
- type: mrr_at_5 |
|
value: 0.779 |
|
- type: ndcg_at_1 |
|
value: 0.482 |
|
- type: ndcg_at_10 |
|
value: 0.924 |
|
- type: ndcg_at_100 |
|
value: 1.736 |
|
- type: ndcg_at_1000 |
|
value: 2.926 |
|
- type: ndcg_at_3 |
|
value: 0.677 |
|
- type: ndcg_at_5 |
|
value: 0.732 |
|
- type: precision_at_1 |
|
value: 0.482 |
|
- type: precision_at_10 |
|
value: 0.20600000000000002 |
|
- type: precision_at_100 |
|
value: 0.078 |
|
- type: precision_at_1000 |
|
value: 0.023 |
|
- type: precision_at_3 |
|
value: 0.367 |
|
- type: precision_at_5 |
|
value: 0.255 |
|
- type: recall_at_1 |
|
value: 0.338 |
|
- type: recall_at_10 |
|
value: 1.545 |
|
- type: recall_at_100 |
|
value: 5.38 |
|
- type: recall_at_1000 |
|
value: 14.609 |
|
- type: recall_at_3 |
|
value: 0.826 |
|
- type: recall_at_5 |
|
value: 0.975 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.8240000000000001 |
|
- type: map_at_10 |
|
value: 1.254 |
|
- type: map_at_100 |
|
value: 1.389 |
|
- type: map_at_1000 |
|
value: 1.419 |
|
- type: map_at_3 |
|
value: 1.158 |
|
- type: map_at_5 |
|
value: 1.189 |
|
- type: mrr_at_1 |
|
value: 0.9329999999999999 |
|
- type: mrr_at_10 |
|
value: 1.4200000000000002 |
|
- type: mrr_at_100 |
|
value: 1.59 |
|
- type: mrr_at_1000 |
|
value: 1.629 |
|
- type: mrr_at_3 |
|
value: 1.29 |
|
- type: mrr_at_5 |
|
value: 1.332 |
|
- type: ndcg_at_1 |
|
value: 0.9329999999999999 |
|
- type: ndcg_at_10 |
|
value: 1.53 |
|
- type: ndcg_at_100 |
|
value: 2.418 |
|
- type: ndcg_at_1000 |
|
value: 3.7310000000000003 |
|
- type: ndcg_at_3 |
|
value: 1.302 |
|
- type: ndcg_at_5 |
|
value: 1.363 |
|
- type: precision_at_1 |
|
value: 0.9329999999999999 |
|
- type: precision_at_10 |
|
value: 0.271 |
|
- type: precision_at_100 |
|
value: 0.083 |
|
- type: precision_at_1000 |
|
value: 0.024 |
|
- type: precision_at_3 |
|
value: 0.622 |
|
- type: precision_at_5 |
|
value: 0.41000000000000003 |
|
- type: recall_at_1 |
|
value: 0.8240000000000001 |
|
- type: recall_at_10 |
|
value: 2.1999999999999997 |
|
- type: recall_at_100 |
|
value: 6.584 |
|
- type: recall_at_1000 |
|
value: 17.068 |
|
- type: recall_at_3 |
|
value: 1.5859999999999999 |
|
- type: recall_at_5 |
|
value: 1.7260000000000002 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.404 |
|
- type: map_at_10 |
|
value: 0.788 |
|
- type: map_at_100 |
|
value: 0.9860000000000001 |
|
- type: map_at_1000 |
|
value: 1.04 |
|
- type: map_at_3 |
|
value: 0.676 |
|
- type: map_at_5 |
|
value: 0.733 |
|
- type: mrr_at_1 |
|
value: 0.5930000000000001 |
|
- type: mrr_at_10 |
|
value: 1.278 |
|
- type: mrr_at_100 |
|
value: 1.545 |
|
- type: mrr_at_1000 |
|
value: 1.599 |
|
- type: mrr_at_3 |
|
value: 1.054 |
|
- type: mrr_at_5 |
|
value: 1.192 |
|
- type: ndcg_at_1 |
|
value: 0.5930000000000001 |
|
- type: ndcg_at_10 |
|
value: 1.1280000000000001 |
|
- type: ndcg_at_100 |
|
value: 2.2689999999999997 |
|
- type: ndcg_at_1000 |
|
value: 4.274 |
|
- type: ndcg_at_3 |
|
value: 0.919 |
|
- type: ndcg_at_5 |
|
value: 1.038 |
|
- type: precision_at_1 |
|
value: 0.5930000000000001 |
|
- type: precision_at_10 |
|
value: 0.296 |
|
- type: precision_at_100 |
|
value: 0.152 |
|
- type: precision_at_1000 |
|
value: 0.05 |
|
- type: precision_at_3 |
|
value: 0.527 |
|
- type: precision_at_5 |
|
value: 0.47400000000000003 |
|
- type: recall_at_1 |
|
value: 0.404 |
|
- type: recall_at_10 |
|
value: 1.601 |
|
- type: recall_at_100 |
|
value: 6.885 |
|
- type: recall_at_1000 |
|
value: 22.356 |
|
- type: recall_at_3 |
|
value: 0.9490000000000001 |
|
- type: recall_at_5 |
|
value: 1.206 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: BeIR/cqadupstack |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.185 |
|
- type: map_at_10 |
|
value: 0.192 |
|
- type: map_at_100 |
|
value: 0.271 |
|
- type: map_at_1000 |
|
value: 0.307 |
|
- type: map_at_3 |
|
value: 0.185 |
|
- type: map_at_5 |
|
value: 0.185 |
|
- type: mrr_at_1 |
|
value: 0.185 |
|
- type: mrr_at_10 |
|
value: 0.20500000000000002 |
|
- type: mrr_at_100 |
|
value: 0.292 |
|
- type: mrr_at_1000 |
|
value: 0.331 |
|
- type: mrr_at_3 |
|
value: 0.185 |
|
- type: mrr_at_5 |
|
value: 0.185 |
|
- type: ndcg_at_1 |
|
value: 0.185 |
|
- type: ndcg_at_10 |
|
value: 0.211 |
|
- type: ndcg_at_100 |
|
value: 0.757 |
|
- type: ndcg_at_1000 |
|
value: 1.928 |
|
- type: ndcg_at_3 |
|
value: 0.185 |
|
- type: ndcg_at_5 |
|
value: 0.185 |
|
- type: precision_at_1 |
|
value: 0.185 |
|
- type: precision_at_10 |
|
value: 0.037 |
|
- type: precision_at_100 |
|
value: 0.039 |
|
- type: precision_at_1000 |
|
value: 0.015 |
|
- type: precision_at_3 |
|
value: 0.062 |
|
- type: precision_at_5 |
|
value: 0.037 |
|
- type: recall_at_1 |
|
value: 0.185 |
|
- type: recall_at_10 |
|
value: 0.246 |
|
- type: recall_at_100 |
|
value: 3.05 |
|
- type: recall_at_1000 |
|
value: 12.5 |
|
- type: recall_at_3 |
|
value: 0.185 |
|
- type: recall_at_5 |
|
value: 0.185 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.241 |
|
- type: map_at_10 |
|
value: 0.372 |
|
- type: map_at_100 |
|
value: 0.45999999999999996 |
|
- type: map_at_1000 |
|
value: 0.47600000000000003 |
|
- type: map_at_3 |
|
value: 0.33999999999999997 |
|
- type: map_at_5 |
|
value: 0.359 |
|
- type: mrr_at_1 |
|
value: 0.651 |
|
- type: mrr_at_10 |
|
value: 1.03 |
|
- type: mrr_at_100 |
|
value: 1.2489999999999999 |
|
- type: mrr_at_1000 |
|
value: 1.282 |
|
- type: mrr_at_3 |
|
value: 0.9450000000000001 |
|
- type: mrr_at_5 |
|
value: 1.0030000000000001 |
|
- type: ndcg_at_1 |
|
value: 0.651 |
|
- type: ndcg_at_10 |
|
value: 0.588 |
|
- type: ndcg_at_100 |
|
value: 1.2550000000000001 |
|
- type: ndcg_at_1000 |
|
value: 1.9040000000000001 |
|
- type: ndcg_at_3 |
|
value: 0.547 |
|
- type: ndcg_at_5 |
|
value: 0.549 |
|
- type: precision_at_1 |
|
value: 0.651 |
|
- type: precision_at_10 |
|
value: 0.182 |
|
- type: precision_at_100 |
|
value: 0.086 |
|
- type: precision_at_1000 |
|
value: 0.02 |
|
- type: precision_at_3 |
|
value: 0.434 |
|
- type: precision_at_5 |
|
value: 0.313 |
|
- type: recall_at_1 |
|
value: 0.241 |
|
- type: recall_at_10 |
|
value: 0.63 |
|
- type: recall_at_100 |
|
value: 3.1759999999999997 |
|
- type: recall_at_1000 |
|
value: 7.175 |
|
- type: recall_at_3 |
|
value: 0.46299999999999997 |
|
- type: recall_at_5 |
|
value: 0.543 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: dbpedia-entity |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.04 |
|
- type: map_at_10 |
|
value: 0.089 |
|
- type: map_at_100 |
|
value: 0.133 |
|
- type: map_at_1000 |
|
value: 0.165 |
|
- type: map_at_3 |
|
value: 0.054 |
|
- type: map_at_5 |
|
value: 0.056999999999999995 |
|
- type: mrr_at_1 |
|
value: 0.75 |
|
- type: mrr_at_10 |
|
value: 1.4749999999999999 |
|
- type: mrr_at_100 |
|
value: 1.8010000000000002 |
|
- type: mrr_at_1000 |
|
value: 1.847 |
|
- type: mrr_at_3 |
|
value: 1.208 |
|
- type: mrr_at_5 |
|
value: 1.333 |
|
- type: ndcg_at_1 |
|
value: 0.625 |
|
- type: ndcg_at_10 |
|
value: 0.428 |
|
- type: ndcg_at_100 |
|
value: 0.705 |
|
- type: ndcg_at_1000 |
|
value: 1.564 |
|
- type: ndcg_at_3 |
|
value: 0.5369999999999999 |
|
- type: ndcg_at_5 |
|
value: 0.468 |
|
- type: precision_at_1 |
|
value: 0.75 |
|
- type: precision_at_10 |
|
value: 0.375 |
|
- type: precision_at_100 |
|
value: 0.27499999999999997 |
|
- type: precision_at_1000 |
|
value: 0.10300000000000001 |
|
- type: precision_at_3 |
|
value: 0.583 |
|
- type: precision_at_5 |
|
value: 0.5 |
|
- type: recall_at_1 |
|
value: 0.04 |
|
- type: recall_at_10 |
|
value: 0.385 |
|
- type: recall_at_100 |
|
value: 1.2670000000000001 |
|
- type: recall_at_1000 |
|
value: 4.522 |
|
- type: recall_at_3 |
|
value: 0.07100000000000001 |
|
- type: recall_at_5 |
|
value: 0.08099999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 22.749999999999996 |
|
- type: f1 |
|
value: 19.335020165482693 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.257 |
|
- type: map_at_10 |
|
value: 0.416 |
|
- type: map_at_100 |
|
value: 0.451 |
|
- type: map_at_1000 |
|
value: 0.46499999999999997 |
|
- type: map_at_3 |
|
value: 0.37 |
|
- type: map_at_5 |
|
value: 0.386 |
|
- type: mrr_at_1 |
|
value: 0.27 |
|
- type: mrr_at_10 |
|
value: 0.44200000000000006 |
|
- type: mrr_at_100 |
|
value: 0.48 |
|
- type: mrr_at_1000 |
|
value: 0.49500000000000005 |
|
- type: mrr_at_3 |
|
value: 0.38999999999999996 |
|
- type: mrr_at_5 |
|
value: 0.411 |
|
- type: ndcg_at_1 |
|
value: 0.27 |
|
- type: ndcg_at_10 |
|
value: 0.51 |
|
- type: ndcg_at_100 |
|
value: 0.738 |
|
- type: ndcg_at_1000 |
|
value: 1.2630000000000001 |
|
- type: ndcg_at_3 |
|
value: 0.41000000000000003 |
|
- type: ndcg_at_5 |
|
value: 0.439 |
|
- type: precision_at_1 |
|
value: 0.27 |
|
- type: precision_at_10 |
|
value: 0.084 |
|
- type: precision_at_100 |
|
value: 0.021 |
|
- type: precision_at_1000 |
|
value: 0.006999999999999999 |
|
- type: precision_at_3 |
|
value: 0.17500000000000002 |
|
- type: precision_at_5 |
|
value: 0.123 |
|
- type: recall_at_1 |
|
value: 0.257 |
|
- type: recall_at_10 |
|
value: 0.786 |
|
- type: recall_at_100 |
|
value: 1.959 |
|
- type: recall_at_1000 |
|
value: 6.334 |
|
- type: recall_at_3 |
|
value: 0.49699999999999994 |
|
- type: recall_at_5 |
|
value: 0.5680000000000001 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.28900000000000003 |
|
- type: map_at_10 |
|
value: 0.475 |
|
- type: map_at_100 |
|
value: 0.559 |
|
- type: map_at_1000 |
|
value: 0.5930000000000001 |
|
- type: map_at_3 |
|
value: 0.38999999999999996 |
|
- type: map_at_5 |
|
value: 0.41700000000000004 |
|
- type: mrr_at_1 |
|
value: 0.772 |
|
- type: mrr_at_10 |
|
value: 1.107 |
|
- type: mrr_at_100 |
|
value: 1.269 |
|
- type: mrr_at_1000 |
|
value: 1.323 |
|
- type: mrr_at_3 |
|
value: 0.9520000000000001 |
|
- type: mrr_at_5 |
|
value: 1.0290000000000001 |
|
- type: ndcg_at_1 |
|
value: 0.772 |
|
- type: ndcg_at_10 |
|
value: 0.755 |
|
- type: ndcg_at_100 |
|
value: 1.256 |
|
- type: ndcg_at_1000 |
|
value: 2.55 |
|
- type: ndcg_at_3 |
|
value: 0.633 |
|
- type: ndcg_at_5 |
|
value: 0.639 |
|
- type: precision_at_1 |
|
value: 0.772 |
|
- type: precision_at_10 |
|
value: 0.262 |
|
- type: precision_at_100 |
|
value: 0.082 |
|
- type: precision_at_1000 |
|
value: 0.03 |
|
- type: precision_at_3 |
|
value: 0.46299999999999997 |
|
- type: precision_at_5 |
|
value: 0.33999999999999997 |
|
- type: recall_at_1 |
|
value: 0.28900000000000003 |
|
- type: recall_at_10 |
|
value: 0.976 |
|
- type: recall_at_100 |
|
value: 2.802 |
|
- type: recall_at_1000 |
|
value: 11.466 |
|
- type: recall_at_3 |
|
value: 0.54 |
|
- type: recall_at_5 |
|
value: 0.6479999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.257 |
|
- type: map_at_10 |
|
value: 0.395 |
|
- type: map_at_100 |
|
value: 0.436 |
|
- type: map_at_1000 |
|
value: 0.447 |
|
- type: map_at_3 |
|
value: 0.347 |
|
- type: map_at_5 |
|
value: 0.369 |
|
- type: mrr_at_1 |
|
value: 0.513 |
|
- type: mrr_at_10 |
|
value: 0.787 |
|
- type: mrr_at_100 |
|
value: 0.865 |
|
- type: mrr_at_1000 |
|
value: 0.8840000000000001 |
|
- type: mrr_at_3 |
|
value: 0.6930000000000001 |
|
- type: mrr_at_5 |
|
value: 0.738 |
|
- type: ndcg_at_1 |
|
value: 0.513 |
|
- type: ndcg_at_10 |
|
value: 0.587 |
|
- type: ndcg_at_100 |
|
value: 0.881 |
|
- type: ndcg_at_1000 |
|
value: 1.336 |
|
- type: ndcg_at_3 |
|
value: 0.46299999999999997 |
|
- type: ndcg_at_5 |
|
value: 0.511 |
|
- type: precision_at_1 |
|
value: 0.513 |
|
- type: precision_at_10 |
|
value: 0.151 |
|
- type: precision_at_100 |
|
value: 0.04 |
|
- type: precision_at_1000 |
|
value: 0.01 |
|
- type: precision_at_3 |
|
value: 0.311 |
|
- type: precision_at_5 |
|
value: 0.22399999999999998 |
|
- type: recall_at_1 |
|
value: 0.257 |
|
- type: recall_at_10 |
|
value: 0.756 |
|
- type: recall_at_100 |
|
value: 1.9849999999999999 |
|
- type: recall_at_1000 |
|
value: 5.111000000000001 |
|
- type: recall_at_3 |
|
value: 0.466 |
|
- type: recall_at_5 |
|
value: 0.5599999999999999 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 50.76400000000001 |
|
- type: ap |
|
value: 50.41569411130455 |
|
- type: f1 |
|
value: 50.14266303576945 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.14300000000000002 |
|
- type: map_at_10 |
|
value: 0.23700000000000002 |
|
- type: map_at_100 |
|
value: 0.27799999999999997 |
|
- type: map_at_1000 |
|
value: 0.291 |
|
- type: map_at_3 |
|
value: 0.197 |
|
- type: map_at_5 |
|
value: 0.215 |
|
- type: mrr_at_1 |
|
value: 0.14300000000000002 |
|
- type: mrr_at_10 |
|
value: 0.247 |
|
- type: mrr_at_100 |
|
value: 0.29 |
|
- type: mrr_at_1000 |
|
value: 0.303 |
|
- type: mrr_at_3 |
|
value: 0.201 |
|
- type: mrr_at_5 |
|
value: 0.219 |
|
- type: ndcg_at_1 |
|
value: 0.14300000000000002 |
|
- type: ndcg_at_10 |
|
value: 0.307 |
|
- type: ndcg_at_100 |
|
value: 0.5720000000000001 |
|
- type: ndcg_at_1000 |
|
value: 1.053 |
|
- type: ndcg_at_3 |
|
value: 0.215 |
|
- type: ndcg_at_5 |
|
value: 0.248 |
|
- type: precision_at_1 |
|
value: 0.14300000000000002 |
|
- type: precision_at_10 |
|
value: 0.056999999999999995 |
|
- type: precision_at_100 |
|
value: 0.02 |
|
- type: precision_at_1000 |
|
value: 0.006 |
|
- type: precision_at_3 |
|
value: 0.091 |
|
- type: precision_at_5 |
|
value: 0.07200000000000001 |
|
- type: recall_at_1 |
|
value: 0.14300000000000002 |
|
- type: recall_at_10 |
|
value: 0.522 |
|
- type: recall_at_100 |
|
value: 1.9009999999999998 |
|
- type: recall_at_1000 |
|
value: 5.893000000000001 |
|
- type: recall_at_3 |
|
value: 0.263 |
|
- type: recall_at_5 |
|
value: 0.34099999999999997 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 61.03283173734611 |
|
- type: f1 |
|
value: 61.24012492746259 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 29.68308253533972 |
|
- type: f1 |
|
value: 16.243459114946905 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 34.330867518493605 |
|
- type: f1 |
|
value: 33.176158044175935 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.13248150638871 |
|
- type: f1 |
|
value: 44.24904249078732 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 15.698400177259078 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 14.888797785310235 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 25.652445385382126 |
|
- type: mrr |
|
value: 25.891573325600227 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.322 |
|
- type: map_at_10 |
|
value: 0.7230000000000001 |
|
- type: map_at_100 |
|
value: 1.248 |
|
- type: map_at_1000 |
|
value: 1.873 |
|
- type: map_at_3 |
|
value: 0.479 |
|
- type: map_at_5 |
|
value: 0.5700000000000001 |
|
- type: mrr_at_1 |
|
value: 6.502 |
|
- type: mrr_at_10 |
|
value: 10.735 |
|
- type: mrr_at_100 |
|
value: 11.848 |
|
- type: mrr_at_1000 |
|
value: 11.995000000000001 |
|
- type: mrr_at_3 |
|
value: 9.391 |
|
- type: mrr_at_5 |
|
value: 9.732000000000001 |
|
- type: ndcg_at_1 |
|
value: 6.037 |
|
- type: ndcg_at_10 |
|
value: 4.873 |
|
- type: ndcg_at_100 |
|
value: 5.959 |
|
- type: ndcg_at_1000 |
|
value: 14.424000000000001 |
|
- type: ndcg_at_3 |
|
value: 5.4559999999999995 |
|
- type: ndcg_at_5 |
|
value: 5.074 |
|
- type: precision_at_1 |
|
value: 6.192 |
|
- type: precision_at_10 |
|
value: 4.458 |
|
- type: precision_at_100 |
|
value: 2.5700000000000003 |
|
- type: precision_at_1000 |
|
value: 1.3679999999999999 |
|
- type: precision_at_3 |
|
value: 5.676 |
|
- type: precision_at_5 |
|
value: 4.954 |
|
- type: recall_at_1 |
|
value: 0.322 |
|
- type: recall_at_10 |
|
value: 1.545 |
|
- type: recall_at_100 |
|
value: 8.301 |
|
- type: recall_at_1000 |
|
value: 37.294 |
|
- type: recall_at_3 |
|
value: 0.623 |
|
- type: recall_at_5 |
|
value: 0.865 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.188 |
|
- type: map_at_10 |
|
value: 0.27 |
|
- type: map_at_100 |
|
value: 0.322 |
|
- type: map_at_1000 |
|
value: 0.335 |
|
- type: map_at_3 |
|
value: 0.246 |
|
- type: map_at_5 |
|
value: 0.246 |
|
- type: mrr_at_1 |
|
value: 0.203 |
|
- type: mrr_at_10 |
|
value: 0.28300000000000003 |
|
- type: mrr_at_100 |
|
value: 0.344 |
|
- type: mrr_at_1000 |
|
value: 0.357 |
|
- type: mrr_at_3 |
|
value: 0.261 |
|
- type: mrr_at_5 |
|
value: 0.261 |
|
- type: ndcg_at_1 |
|
value: 0.203 |
|
- type: ndcg_at_10 |
|
value: 0.329 |
|
- type: ndcg_at_100 |
|
value: 0.628 |
|
- type: ndcg_at_1000 |
|
value: 1.0959999999999999 |
|
- type: ndcg_at_3 |
|
value: 0.272 |
|
- type: ndcg_at_5 |
|
value: 0.272 |
|
- type: precision_at_1 |
|
value: 0.203 |
|
- type: precision_at_10 |
|
value: 0.055 |
|
- type: precision_at_100 |
|
value: 0.024 |
|
- type: precision_at_1000 |
|
value: 0.006999999999999999 |
|
- type: precision_at_3 |
|
value: 0.116 |
|
- type: precision_at_5 |
|
value: 0.06999999999999999 |
|
- type: recall_at_1 |
|
value: 0.188 |
|
- type: recall_at_10 |
|
value: 0.507 |
|
- type: recall_at_100 |
|
value: 1.883 |
|
- type: recall_at_1000 |
|
value: 5.609999999999999 |
|
- type: recall_at_3 |
|
value: 0.333 |
|
- type: recall_at_5 |
|
value: 0.333 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.016000000000002 |
|
- type: map_at_10 |
|
value: 28.977999999999998 |
|
- type: map_at_100 |
|
value: 29.579 |
|
- type: map_at_1000 |
|
value: 29.648999999999997 |
|
- type: map_at_3 |
|
value: 27.673 |
|
- type: map_at_5 |
|
value: 28.427000000000003 |
|
- type: mrr_at_1 |
|
value: 27.93 |
|
- type: mrr_at_10 |
|
value: 32.462999999999994 |
|
- type: mrr_at_100 |
|
value: 32.993 |
|
- type: mrr_at_1000 |
|
value: 33.044000000000004 |
|
- type: mrr_at_3 |
|
value: 31.252000000000002 |
|
- type: mrr_at_5 |
|
value: 31.968999999999998 |
|
- type: ndcg_at_1 |
|
value: 27.96 |
|
- type: ndcg_at_10 |
|
value: 31.954 |
|
- type: ndcg_at_100 |
|
value: 34.882000000000005 |
|
- type: ndcg_at_1000 |
|
value: 36.751 |
|
- type: ndcg_at_3 |
|
value: 29.767 |
|
- type: ndcg_at_5 |
|
value: 30.816 |
|
- type: precision_at_1 |
|
value: 27.96 |
|
- type: precision_at_10 |
|
value: 4.826 |
|
- type: precision_at_100 |
|
value: 0.697 |
|
- type: precision_at_1000 |
|
value: 0.093 |
|
- type: precision_at_3 |
|
value: 12.837000000000002 |
|
- type: precision_at_5 |
|
value: 8.559999999999999 |
|
- type: recall_at_1 |
|
value: 24.016000000000002 |
|
- type: recall_at_10 |
|
value: 37.574999999999996 |
|
- type: recall_at_100 |
|
value: 50.843 |
|
- type: recall_at_1000 |
|
value: 64.654 |
|
- type: recall_at_3 |
|
value: 31.182 |
|
- type: recall_at_5 |
|
value: 34.055 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 18.38048892083281 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 27.103011764141478 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.18 |
|
- type: map_at_10 |
|
value: 0.457 |
|
- type: map_at_100 |
|
value: 0.634 |
|
- type: map_at_1000 |
|
value: 0.7000000000000001 |
|
- type: map_at_3 |
|
value: 0.333 |
|
- type: map_at_5 |
|
value: 0.387 |
|
- type: mrr_at_1 |
|
value: 0.8999999999999999 |
|
- type: mrr_at_10 |
|
value: 1.967 |
|
- type: mrr_at_100 |
|
value: 2.396 |
|
- type: mrr_at_1000 |
|
value: 2.495 |
|
- type: mrr_at_3 |
|
value: 1.567 |
|
- type: mrr_at_5 |
|
value: 1.7670000000000001 |
|
- type: ndcg_at_1 |
|
value: 0.8999999999999999 |
|
- type: ndcg_at_10 |
|
value: 1.022 |
|
- type: ndcg_at_100 |
|
value: 2.366 |
|
- type: ndcg_at_1000 |
|
value: 4.689 |
|
- type: ndcg_at_3 |
|
value: 0.882 |
|
- type: ndcg_at_5 |
|
value: 0.7929999999999999 |
|
- type: precision_at_1 |
|
value: 0.8999999999999999 |
|
- type: precision_at_10 |
|
value: 0.58 |
|
- type: precision_at_100 |
|
value: 0.263 |
|
- type: precision_at_1000 |
|
value: 0.084 |
|
- type: precision_at_3 |
|
value: 0.8999999999999999 |
|
- type: precision_at_5 |
|
value: 0.74 |
|
- type: recall_at_1 |
|
value: 0.18 |
|
- type: recall_at_10 |
|
value: 1.208 |
|
- type: recall_at_100 |
|
value: 5.373 |
|
- type: recall_at_1000 |
|
value: 17.112 |
|
- type: recall_at_3 |
|
value: 0.5579999999999999 |
|
- type: recall_at_5 |
|
value: 0.7779999999999999 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 55.229896309578905 |
|
- type: cos_sim_spearman |
|
value: 48.54616726085393 |
|
- type: euclidean_pearson |
|
value: 53.828130644322 |
|
- type: euclidean_spearman |
|
value: 48.2907441223958 |
|
- type: manhattan_pearson |
|
value: 53.72684612327582 |
|
- type: manhattan_spearman |
|
value: 48.228319721712744 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 57.73555535277214 |
|
- type: cos_sim_spearman |
|
value: 55.58790083939622 |
|
- type: euclidean_pearson |
|
value: 61.009463373795384 |
|
- type: euclidean_spearman |
|
value: 56.696846101196044 |
|
- type: manhattan_pearson |
|
value: 60.875111392597894 |
|
- type: manhattan_spearman |
|
value: 56.63100766160946 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 19.47269635955134 |
|
- type: cos_sim_spearman |
|
value: 18.35951746300603 |
|
- type: euclidean_pearson |
|
value: 23.130707248318714 |
|
- type: euclidean_spearman |
|
value: 22.92241668287248 |
|
- type: manhattan_pearson |
|
value: 22.99371642148021 |
|
- type: manhattan_spearman |
|
value: 22.770233678121897 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.78346805351368 |
|
- type: cos_sim_spearman |
|
value: 28.84281669682782 |
|
- type: euclidean_pearson |
|
value: 34.508176962091156 |
|
- type: euclidean_spearman |
|
value: 32.269242265609975 |
|
- type: manhattan_pearson |
|
value: 34.41366600914297 |
|
- type: manhattan_spearman |
|
value: 32.15352239729175 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 29.550332218260465 |
|
- type: cos_sim_spearman |
|
value: 29.188654452524528 |
|
- type: euclidean_pearson |
|
value: 33.80339596511417 |
|
- type: euclidean_spearman |
|
value: 33.49607278843874 |
|
- type: manhattan_pearson |
|
value: 33.589427741967334 |
|
- type: manhattan_spearman |
|
value: 33.288312003652884 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 27.163752699585885 |
|
- type: cos_sim_spearman |
|
value: 39.0544187582685 |
|
- type: euclidean_pearson |
|
value: 38.93841642732113 |
|
- type: euclidean_spearman |
|
value: 42.861814968921294 |
|
- type: manhattan_pearson |
|
value: 38.78821319739337 |
|
- type: manhattan_spearman |
|
value: 42.757121435678954 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 57.15429605615292 |
|
- type: cos_sim_spearman |
|
value: 61.21576579300284 |
|
- type: euclidean_pearson |
|
value: 59.2835939062064 |
|
- type: euclidean_spearman |
|
value: 60.902713241808236 |
|
- type: manhattan_pearson |
|
value: 59.510770285546364 |
|
- type: manhattan_spearman |
|
value: 61.02979474159327 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 41.81726547830133 |
|
- type: cos_sim_spearman |
|
value: 44.45123398124273 |
|
- type: euclidean_pearson |
|
value: 46.44144033159064 |
|
- type: euclidean_spearman |
|
value: 46.61348337508052 |
|
- type: manhattan_pearson |
|
value: 46.48092744041165 |
|
- type: manhattan_spearman |
|
value: 46.78049599791891 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 46.085942179295465 |
|
- type: cos_sim_spearman |
|
value: 44.394736992467365 |
|
- type: euclidean_pearson |
|
value: 47.06981069147408 |
|
- type: euclidean_spearman |
|
value: 45.40499474054004 |
|
- type: manhattan_pearson |
|
value: 46.96497631950794 |
|
- type: manhattan_spearman |
|
value: 45.31936619298336 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 43.89526517578129 |
|
- type: mrr |
|
value: 64.30753070458954 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.417 |
|
- type: map_at_10 |
|
value: 2.189 |
|
- type: map_at_100 |
|
value: 2.5669999999999997 |
|
- type: map_at_1000 |
|
value: 2.662 |
|
- type: map_at_3 |
|
value: 1.694 |
|
- type: map_at_5 |
|
value: 1.928 |
|
- type: mrr_at_1 |
|
value: 1.667 |
|
- type: mrr_at_10 |
|
value: 2.4899999999999998 |
|
- type: mrr_at_100 |
|
value: 2.8400000000000003 |
|
- type: mrr_at_1000 |
|
value: 2.928 |
|
- type: mrr_at_3 |
|
value: 1.944 |
|
- type: mrr_at_5 |
|
value: 2.178 |
|
- type: ndcg_at_1 |
|
value: 1.667 |
|
- type: ndcg_at_10 |
|
value: 2.913 |
|
- type: ndcg_at_100 |
|
value: 5.482 |
|
- type: ndcg_at_1000 |
|
value: 8.731 |
|
- type: ndcg_at_3 |
|
value: 1.867 |
|
- type: ndcg_at_5 |
|
value: 2.257 |
|
- type: precision_at_1 |
|
value: 1.667 |
|
- type: precision_at_10 |
|
value: 0.567 |
|
- type: precision_at_100 |
|
value: 0.213 |
|
- type: precision_at_1000 |
|
value: 0.053 |
|
- type: precision_at_3 |
|
value: 0.7779999999999999 |
|
- type: precision_at_5 |
|
value: 0.6669999999999999 |
|
- type: recall_at_1 |
|
value: 1.417 |
|
- type: recall_at_10 |
|
value: 5.028 |
|
- type: recall_at_100 |
|
value: 18.5 |
|
- type: recall_at_1000 |
|
value: 45.072 |
|
- type: recall_at_3 |
|
value: 2.083 |
|
- type: recall_at_5 |
|
value: 3.083 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.02871287128713 |
|
- type: cos_sim_ap |
|
value: 17.404404071912694 |
|
- type: cos_sim_f1 |
|
value: 25.89285714285714 |
|
- type: cos_sim_precision |
|
value: 29.292929292929294 |
|
- type: cos_sim_recall |
|
value: 23.200000000000003 |
|
- type: dot_accuracy |
|
value: 99.0118811881188 |
|
- type: dot_ap |
|
value: 5.4739000785007335 |
|
- type: dot_f1 |
|
value: 12.178702570379436 |
|
- type: dot_precision |
|
value: 8.774250440917108 |
|
- type: dot_recall |
|
value: 19.900000000000002 |
|
- type: euclidean_accuracy |
|
value: 99.03663366336633 |
|
- type: euclidean_ap |
|
value: 19.20851069839796 |
|
- type: euclidean_f1 |
|
value: 27.16555612506407 |
|
- type: euclidean_precision |
|
value: 27.865404837013667 |
|
- type: euclidean_recall |
|
value: 26.5 |
|
- type: manhattan_accuracy |
|
value: 99.03663366336633 |
|
- type: manhattan_ap |
|
value: 19.12862913626528 |
|
- type: manhattan_f1 |
|
value: 26.96629213483146 |
|
- type: manhattan_precision |
|
value: 28.99884925201381 |
|
- type: manhattan_recall |
|
value: 25.2 |
|
- type: max_accuracy |
|
value: 99.03663366336633 |
|
- type: max_ap |
|
value: 19.20851069839796 |
|
- type: max_f1 |
|
value: 27.16555612506407 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 23.657118721775905 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 27.343558395037043 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 23.346327148080043 |
|
- type: mrr |
|
value: 21.99097063067651 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.032 |
|
- type: map_at_10 |
|
value: 0.157 |
|
- type: map_at_100 |
|
value: 0.583 |
|
- type: map_at_1000 |
|
value: 1.48 |
|
- type: map_at_3 |
|
value: 0.066 |
|
- type: map_at_5 |
|
value: 0.105 |
|
- type: mrr_at_1 |
|
value: 10 |
|
- type: mrr_at_10 |
|
value: 16.99 |
|
- type: mrr_at_100 |
|
value: 18.284 |
|
- type: mrr_at_1000 |
|
value: 18.394 |
|
- type: mrr_at_3 |
|
value: 14.000000000000002 |
|
- type: mrr_at_5 |
|
value: 15.8 |
|
- type: ndcg_at_1 |
|
value: 8 |
|
- type: ndcg_at_10 |
|
value: 7.504 |
|
- type: ndcg_at_100 |
|
value: 5.339 |
|
- type: ndcg_at_1000 |
|
value: 6.046 |
|
- type: ndcg_at_3 |
|
value: 8.358 |
|
- type: ndcg_at_5 |
|
value: 8.142000000000001 |
|
- type: precision_at_1 |
|
value: 10 |
|
- type: precision_at_10 |
|
value: 8.6 |
|
- type: precision_at_100 |
|
value: 5.9799999999999995 |
|
- type: precision_at_1000 |
|
value: 2.976 |
|
- type: precision_at_3 |
|
value: 9.333 |
|
- type: precision_at_5 |
|
value: 9.2 |
|
- type: recall_at_1 |
|
value: 0.032 |
|
- type: recall_at_10 |
|
value: 0.252 |
|
- type: recall_at_100 |
|
value: 1.529 |
|
- type: recall_at_1000 |
|
value: 6.364 |
|
- type: recall_at_3 |
|
value: 0.08499999999999999 |
|
- type: recall_at_5 |
|
value: 0.154 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: webis-touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.44200000000000006 |
|
- type: map_at_10 |
|
value: 0.996 |
|
- type: map_at_100 |
|
value: 1.317 |
|
- type: map_at_1000 |
|
value: 1.624 |
|
- type: map_at_3 |
|
value: 0.736 |
|
- type: map_at_5 |
|
value: 0.951 |
|
- type: mrr_at_1 |
|
value: 4.082 |
|
- type: mrr_at_10 |
|
value: 10.102 |
|
- type: mrr_at_100 |
|
value: 10.978 |
|
- type: mrr_at_1000 |
|
value: 11.1 |
|
- type: mrr_at_3 |
|
value: 7.8229999999999995 |
|
- type: mrr_at_5 |
|
value: 9.252 |
|
- type: ndcg_at_1 |
|
value: 4.082 |
|
- type: ndcg_at_10 |
|
value: 3.821 |
|
- type: ndcg_at_100 |
|
value: 5.682 |
|
- type: ndcg_at_1000 |
|
value: 10.96 |
|
- type: ndcg_at_3 |
|
value: 4.813 |
|
- type: ndcg_at_5 |
|
value: 4.757 |
|
- type: precision_at_1 |
|
value: 4.082 |
|
- type: precision_at_10 |
|
value: 3.061 |
|
- type: precision_at_100 |
|
value: 1.367 |
|
- type: precision_at_1000 |
|
value: 0.46299999999999997 |
|
- type: precision_at_3 |
|
value: 4.7620000000000005 |
|
- type: precision_at_5 |
|
value: 4.898000000000001 |
|
- type: recall_at_1 |
|
value: 0.44200000000000006 |
|
- type: recall_at_10 |
|
value: 2.059 |
|
- type: recall_at_100 |
|
value: 7.439 |
|
- type: recall_at_1000 |
|
value: 25.191000000000003 |
|
- type: recall_at_3 |
|
value: 1.095 |
|
- type: recall_at_5 |
|
value: 1.725 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 54.925999999999995 |
|
- type: ap |
|
value: 9.658236434063275 |
|
- type: f1 |
|
value: 43.469829154993064 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 40.7498585172609 |
|
- type: f1 |
|
value: 40.720120106546574 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 20.165152514024733 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 77.59432556476128 |
|
- type: cos_sim_ap |
|
value: 30.37846072188074 |
|
- type: cos_sim_f1 |
|
value: 37.9231242656521 |
|
- type: cos_sim_precision |
|
value: 24.064474898814172 |
|
- type: cos_sim_recall |
|
value: 89.41952506596306 |
|
- type: dot_accuracy |
|
value: 77.42146986946415 |
|
- type: dot_ap |
|
value: 24.073476661930034 |
|
- type: dot_f1 |
|
value: 37.710580857735025 |
|
- type: dot_precision |
|
value: 23.61083383243495 |
|
- type: dot_recall |
|
value: 93.61477572559367 |
|
- type: euclidean_accuracy |
|
value: 77.64797043571556 |
|
- type: euclidean_ap |
|
value: 31.892152386237594 |
|
- type: euclidean_f1 |
|
value: 38.21154759481647 |
|
- type: euclidean_precision |
|
value: 25.719243766554023 |
|
- type: euclidean_recall |
|
value: 74.30079155672823 |
|
- type: manhattan_accuracy |
|
value: 77.6539309769327 |
|
- type: manhattan_ap |
|
value: 31.89545356309865 |
|
- type: manhattan_f1 |
|
value: 38.16428166172855 |
|
- type: manhattan_precision |
|
value: 25.07247577238466 |
|
- type: manhattan_recall |
|
value: 79.86807387862797 |
|
- type: max_accuracy |
|
value: 77.6539309769327 |
|
- type: max_ap |
|
value: 31.89545356309865 |
|
- type: max_f1 |
|
value: 38.21154759481647 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 76.56886715566422 |
|
- type: cos_sim_ap |
|
value: 44.04480929059786 |
|
- type: cos_sim_f1 |
|
value: 43.73100054674686 |
|
- type: cos_sim_precision |
|
value: 30.540367168647098 |
|
- type: cos_sim_recall |
|
value: 76.97874961502926 |
|
- type: dot_accuracy |
|
value: 74.80110218496526 |
|
- type: dot_ap |
|
value: 26.487746384962758 |
|
- type: dot_f1 |
|
value: 40.91940608182585 |
|
- type: dot_precision |
|
value: 25.9157358738502 |
|
- type: dot_recall |
|
value: 97.18201416692331 |
|
- type: euclidean_accuracy |
|
value: 76.97054371870998 |
|
- type: euclidean_ap |
|
value: 47.079120397438416 |
|
- type: euclidean_f1 |
|
value: 45.866182572614115 |
|
- type: euclidean_precision |
|
value: 34.580791490692945 |
|
- type: euclidean_recall |
|
value: 68.0859254696643 |
|
- type: manhattan_accuracy |
|
value: 76.96084138626927 |
|
- type: manhattan_ap |
|
value: 47.168701873575976 |
|
- type: manhattan_f1 |
|
value: 45.985439966237614 |
|
- type: manhattan_precision |
|
value: 34.974321938693635 |
|
- type: manhattan_recall |
|
value: 67.11579919926086 |
|
- type: max_accuracy |
|
value: 76.97054371870998 |
|
- type: max_ap |
|
value: 47.168701873575976 |
|
- type: max_f1 |
|
value: 45.985439966237614 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 3.322530620021471 |
|
- type: cos_sim_spearman |
|
value: 3.7583567993545195 |
|
- type: euclidean_pearson |
|
value: 3.743782192206081 |
|
- type: euclidean_spearman |
|
value: 3.758336694921531 |
|
- type: manhattan_pearson |
|
value: 3.845233721819267 |
|
- type: manhattan_spearman |
|
value: 3.8542743797718026 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 8.552640773272078 |
|
- type: cos_sim_spearman |
|
value: 10.086360519713061 |
|
- type: euclidean_pearson |
|
value: 9.902099049347935 |
|
- type: euclidean_spearman |
|
value: 10.086351512635042 |
|
- type: manhattan_pearson |
|
value: 9.898006826713932 |
|
- type: manhattan_spearman |
|
value: 10.076531690161783 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 21.955999999999996 |
|
- type: f1 |
|
value: 20.596128116112816 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 17.6945509937099 |
|
- type: cos_sim_spearman |
|
value: 19.312286927022825 |
|
- type: euclidean_pearson |
|
value: 19.259393744977515 |
|
- type: euclidean_spearman |
|
value: 19.312290390892713 |
|
- type: manhattan_pearson |
|
value: 19.223527109645772 |
|
- type: manhattan_spearman |
|
value: 19.32655209742963 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 18.657841790313405 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 16.82483158478091 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 19.71658789133091 |
|
- type: mrr |
|
value: 23.480595238095237 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 22.475972401039495 |
|
- type: mrr |
|
value: 25.993650793650797 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.026 |
|
- type: map_at_10 |
|
value: 1.6389999999999998 |
|
- type: map_at_100 |
|
value: 1.875 |
|
- type: map_at_1000 |
|
value: 1.9529999999999998 |
|
- type: map_at_3 |
|
value: 1.417 |
|
- type: map_at_5 |
|
value: 1.5110000000000001 |
|
- type: mrr_at_1 |
|
value: 1.525 |
|
- type: mrr_at_10 |
|
value: 2.478 |
|
- type: mrr_at_100 |
|
value: 2.779 |
|
- type: mrr_at_1000 |
|
value: 2.861 |
|
- type: mrr_at_3 |
|
value: 2.105 |
|
- type: mrr_at_5 |
|
value: 2.283 |
|
- type: ndcg_at_1 |
|
value: 1.525 |
|
- type: ndcg_at_10 |
|
value: 2.222 |
|
- type: ndcg_at_100 |
|
value: 3.81 |
|
- type: ndcg_at_1000 |
|
value: 6.465999999999999 |
|
- type: ndcg_at_3 |
|
value: 1.7489999999999999 |
|
- type: ndcg_at_5 |
|
value: 1.8980000000000001 |
|
- type: precision_at_1 |
|
value: 1.525 |
|
- type: precision_at_10 |
|
value: 0.543 |
|
- type: precision_at_100 |
|
value: 0.187 |
|
- type: precision_at_1000 |
|
value: 0.055 |
|
- type: precision_at_3 |
|
value: 0.992 |
|
- type: precision_at_5 |
|
value: 0.76 |
|
- type: recall_at_1 |
|
value: 1.026 |
|
- type: recall_at_10 |
|
value: 3.1780000000000004 |
|
- type: recall_at_100 |
|
value: 10.481 |
|
- type: recall_at_1000 |
|
value: 29.735 |
|
- type: recall_at_3 |
|
value: 1.8849999999999998 |
|
- type: recall_at_5 |
|
value: 2.2560000000000002 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 54.99699338544799 |
|
- type: cos_sim_ap |
|
value: 57.78007274332544 |
|
- type: cos_sim_f1 |
|
value: 67.95391338895512 |
|
- type: cos_sim_precision |
|
value: 51.46846413095811 |
|
- type: cos_sim_recall |
|
value: 99.9766191255553 |
|
- type: dot_accuracy |
|
value: 54.99699338544799 |
|
- type: dot_ap |
|
value: 57.7791056074979 |
|
- type: dot_f1 |
|
value: 67.95391338895512 |
|
- type: dot_precision |
|
value: 51.46846413095811 |
|
- type: dot_recall |
|
value: 99.9766191255553 |
|
- type: euclidean_accuracy |
|
value: 54.99699338544799 |
|
- type: euclidean_ap |
|
value: 57.7800760462191 |
|
- type: euclidean_f1 |
|
value: 67.95391338895512 |
|
- type: euclidean_precision |
|
value: 51.46846413095811 |
|
- type: euclidean_recall |
|
value: 99.9766191255553 |
|
- type: manhattan_accuracy |
|
value: 55.05712567648827 |
|
- type: manhattan_ap |
|
value: 57.8146828916844 |
|
- type: manhattan_f1 |
|
value: 67.95900532295227 |
|
- type: manhattan_precision |
|
value: 51.46811070998797 |
|
- type: manhattan_recall |
|
value: 100 |
|
- type: max_accuracy |
|
value: 55.05712567648827 |
|
- type: max_ap |
|
value: 57.8146828916844 |
|
- type: max_f1 |
|
value: 67.95900532295227 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.632 |
|
- type: map_at_10 |
|
value: 1.7510000000000001 |
|
- type: map_at_100 |
|
value: 2.004 |
|
- type: map_at_1000 |
|
value: 2.0660000000000003 |
|
- type: map_at_3 |
|
value: 1.493 |
|
- type: map_at_5 |
|
value: 1.635 |
|
- type: mrr_at_1 |
|
value: 0.632 |
|
- type: mrr_at_10 |
|
value: 1.7670000000000001 |
|
- type: mrr_at_100 |
|
value: 2.02 |
|
- type: mrr_at_1000 |
|
value: 2.081 |
|
- type: mrr_at_3 |
|
value: 1.528 |
|
- type: mrr_at_5 |
|
value: 1.649 |
|
- type: ndcg_at_1 |
|
value: 0.632 |
|
- type: ndcg_at_10 |
|
value: 2.32 |
|
- type: ndcg_at_100 |
|
value: 3.758 |
|
- type: ndcg_at_1000 |
|
value: 5.894 |
|
- type: ndcg_at_3 |
|
value: 1.7850000000000001 |
|
- type: ndcg_at_5 |
|
value: 2.044 |
|
- type: precision_at_1 |
|
value: 0.632 |
|
- type: precision_at_10 |
|
value: 0.411 |
|
- type: precision_at_100 |
|
value: 0.11399999999999999 |
|
- type: precision_at_1000 |
|
value: 0.03 |
|
- type: precision_at_3 |
|
value: 0.878 |
|
- type: precision_at_5 |
|
value: 0.653 |
|
- type: recall_at_1 |
|
value: 0.632 |
|
- type: recall_at_10 |
|
value: 4.109999999999999 |
|
- type: recall_at_100 |
|
value: 11.222 |
|
- type: recall_at_1000 |
|
value: 29.083 |
|
- type: recall_at_3 |
|
value: 2.634 |
|
- type: recall_at_5 |
|
value: 3.267 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.436 |
|
- type: map_at_10 |
|
value: 3.4099999999999997 |
|
- type: map_at_100 |
|
value: 4.128 |
|
- type: map_at_1000 |
|
value: 4.282 |
|
- type: map_at_3 |
|
value: 2.423 |
|
- type: map_at_5 |
|
value: 2.927 |
|
- type: mrr_at_1 |
|
value: 6 |
|
- type: mrr_at_10 |
|
value: 9.701 |
|
- type: mrr_at_100 |
|
value: 10.347000000000001 |
|
- type: mrr_at_1000 |
|
value: 10.427999999999999 |
|
- type: mrr_at_3 |
|
value: 8.267 |
|
- type: mrr_at_5 |
|
value: 9.004 |
|
- type: ndcg_at_1 |
|
value: 6 |
|
- type: ndcg_at_10 |
|
value: 5.856 |
|
- type: ndcg_at_100 |
|
value: 9.063 |
|
- type: ndcg_at_1000 |
|
value: 12.475999999999999 |
|
- type: ndcg_at_3 |
|
value: 5.253 |
|
- type: ndcg_at_5 |
|
value: 5.223 |
|
- type: precision_at_1 |
|
value: 6 |
|
- type: precision_at_10 |
|
value: 3.125 |
|
- type: precision_at_100 |
|
value: 0.812 |
|
- type: precision_at_1000 |
|
value: 0.169 |
|
- type: precision_at_3 |
|
value: 4.7669999999999995 |
|
- type: precision_at_5 |
|
value: 4.15 |
|
- type: recall_at_1 |
|
value: 1.436 |
|
- type: recall_at_10 |
|
value: 6.544999999999999 |
|
- type: recall_at_100 |
|
value: 16.634999999999998 |
|
- type: recall_at_1000 |
|
value: 33.987 |
|
- type: recall_at_3 |
|
value: 3.144 |
|
- type: recall_at_5 |
|
value: 4.519 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.1000000000000005 |
|
- type: map_at_10 |
|
value: 7.911 |
|
- type: map_at_100 |
|
value: 8.92 |
|
- type: map_at_1000 |
|
value: 9.033 |
|
- type: map_at_3 |
|
value: 6.4 |
|
- type: map_at_5 |
|
value: 7.23 |
|
- type: mrr_at_1 |
|
value: 4.1000000000000005 |
|
- type: mrr_at_10 |
|
value: 7.911 |
|
- type: mrr_at_100 |
|
value: 8.92 |
|
- type: mrr_at_1000 |
|
value: 9.033 |
|
- type: mrr_at_3 |
|
value: 6.4 |
|
- type: mrr_at_5 |
|
value: 7.23 |
|
- type: ndcg_at_1 |
|
value: 4.1000000000000005 |
|
- type: ndcg_at_10 |
|
value: 10.374 |
|
- type: ndcg_at_100 |
|
value: 15.879999999999999 |
|
- type: ndcg_at_1000 |
|
value: 19.246 |
|
- type: ndcg_at_3 |
|
value: 7.217 |
|
- type: ndcg_at_5 |
|
value: 8.706 |
|
- type: precision_at_1 |
|
value: 4.1000000000000005 |
|
- type: precision_at_10 |
|
value: 1.8399999999999999 |
|
- type: precision_at_100 |
|
value: 0.45599999999999996 |
|
- type: precision_at_1000 |
|
value: 0.073 |
|
- type: precision_at_3 |
|
value: 3.2 |
|
- type: precision_at_5 |
|
value: 2.64 |
|
- type: recall_at_1 |
|
value: 4.1000000000000005 |
|
- type: recall_at_10 |
|
value: 18.4 |
|
- type: recall_at_100 |
|
value: 45.6 |
|
- type: recall_at_1000 |
|
value: 72.89999999999999 |
|
- type: recall_at_3 |
|
value: 9.6 |
|
- type: recall_at_5 |
|
value: 13.200000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 20.353982300884958 |
|
- type: f1 |
|
value: 12.69588085868714 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 55.497185741088174 |
|
- type: ap |
|
value: 20.43046737602198 |
|
- type: f1 |
|
value: 48.93980371558734 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 32.588967426128654 |
|
- type: cos_sim_spearman |
|
value: 42.14900040682406 |
|
- type: euclidean_pearson |
|
value: 39.568373451615685 |
|
- type: euclidean_spearman |
|
value: 42.14899152396297 |
|
- type: manhattan_pearson |
|
value: 39.5220710244444 |
|
- type: manhattan_spearman |
|
value: 42.14787636056146 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 1.1655156335725807 |
|
- type: mrr |
|
value: 0.2361111111111111 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.9029999999999998 |
|
- type: map_at_10 |
|
value: 2.9139999999999997 |
|
- type: map_at_100 |
|
value: 3.2259999999999995 |
|
- type: map_at_1000 |
|
value: 3.2870000000000004 |
|
- type: map_at_3 |
|
value: 2.483 |
|
- type: map_at_5 |
|
value: 2.71 |
|
- type: mrr_at_1 |
|
value: 2.02 |
|
- type: mrr_at_10 |
|
value: 3.064 |
|
- type: mrr_at_100 |
|
value: 3.382 |
|
- type: mrr_at_1000 |
|
value: 3.4419999999999997 |
|
- type: mrr_at_3 |
|
value: 2.622 |
|
- type: mrr_at_5 |
|
value: 2.855 |
|
- type: ndcg_at_1 |
|
value: 2.02 |
|
- type: ndcg_at_10 |
|
value: 3.639 |
|
- type: ndcg_at_100 |
|
value: 5.431 |
|
- type: ndcg_at_1000 |
|
value: 7.404 |
|
- type: ndcg_at_3 |
|
value: 2.723 |
|
- type: ndcg_at_5 |
|
value: 3.1350000000000002 |
|
- type: precision_at_1 |
|
value: 2.02 |
|
- type: precision_at_10 |
|
value: 0.626 |
|
- type: precision_at_100 |
|
value: 0.159 |
|
- type: precision_at_1000 |
|
value: 0.033 |
|
- type: precision_at_3 |
|
value: 1.17 |
|
- type: precision_at_5 |
|
value: 0.9199999999999999 |
|
- type: recall_at_1 |
|
value: 1.9029999999999998 |
|
- type: recall_at_10 |
|
value: 5.831 |
|
- type: recall_at_100 |
|
value: 14.737 |
|
- type: recall_at_1000 |
|
value: 30.84 |
|
- type: recall_at_3 |
|
value: 3.2870000000000004 |
|
- type: recall_at_5 |
|
value: 4.282 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 25.3866845998655 |
|
- type: f1 |
|
value: 23.404809615998495 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 40.34969737726966 |
|
- type: f1 |
|
value: 37.88244646590394 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.5 |
|
- type: map_at_10 |
|
value: 2.0740000000000003 |
|
- type: map_at_100 |
|
value: 2.2079999999999997 |
|
- type: map_at_1000 |
|
value: 2.241 |
|
- type: map_at_3 |
|
value: 1.933 |
|
- type: map_at_5 |
|
value: 2.023 |
|
- type: mrr_at_1 |
|
value: 1.5 |
|
- type: mrr_at_10 |
|
value: 2.0740000000000003 |
|
- type: mrr_at_100 |
|
value: 2.2079999999999997 |
|
- type: mrr_at_1000 |
|
value: 2.241 |
|
- type: mrr_at_3 |
|
value: 1.933 |
|
- type: mrr_at_5 |
|
value: 2.023 |
|
- type: ndcg_at_1 |
|
value: 1.5 |
|
- type: ndcg_at_10 |
|
value: 2.368 |
|
- type: ndcg_at_100 |
|
value: 3.309 |
|
- type: ndcg_at_1000 |
|
value: 4.593 |
|
- type: ndcg_at_3 |
|
value: 2.0789999999999997 |
|
- type: ndcg_at_5 |
|
value: 2.242 |
|
- type: precision_at_1 |
|
value: 1.5 |
|
- type: precision_at_10 |
|
value: 0.33 |
|
- type: precision_at_100 |
|
value: 0.084 |
|
- type: precision_at_1000 |
|
value: 0.019 |
|
- type: precision_at_3 |
|
value: 0.8330000000000001 |
|
- type: precision_at_5 |
|
value: 0.58 |
|
- type: recall_at_1 |
|
value: 1.5 |
|
- type: recall_at_10 |
|
value: 3.3000000000000003 |
|
- type: recall_at_100 |
|
value: 8.4 |
|
- type: recall_at_1000 |
|
value: 19.400000000000002 |
|
- type: recall_at_3 |
|
value: 2.5 |
|
- type: recall_at_5 |
|
value: 2.9000000000000004 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 38.94 |
|
- type: f1 |
|
value: 38.4171730136538 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 54.141851651326476 |
|
- type: cos_sim_ap |
|
value: 55.63298007661861 |
|
- type: cos_sim_f1 |
|
value: 67.85195936139333 |
|
- type: cos_sim_precision |
|
value: 51.68601437258153 |
|
- type: cos_sim_recall |
|
value: 98.73284054910243 |
|
- type: dot_accuracy |
|
value: 54.141851651326476 |
|
- type: dot_ap |
|
value: 55.63298007661861 |
|
- type: dot_f1 |
|
value: 67.85195936139333 |
|
- type: dot_precision |
|
value: 51.68601437258153 |
|
- type: dot_recall |
|
value: 98.73284054910243 |
|
- type: euclidean_accuracy |
|
value: 54.141851651326476 |
|
- type: euclidean_ap |
|
value: 55.63298007661861 |
|
- type: euclidean_f1 |
|
value: 67.85195936139333 |
|
- type: euclidean_precision |
|
value: 51.68601437258153 |
|
- type: euclidean_recall |
|
value: 98.73284054910243 |
|
- type: manhattan_accuracy |
|
value: 54.03356794802382 |
|
- type: manhattan_ap |
|
value: 55.650247173847944 |
|
- type: manhattan_f1 |
|
value: 67.83667621776503 |
|
- type: manhattan_precision |
|
value: 51.32791327913279 |
|
- type: manhattan_recall |
|
value: 100 |
|
- type: max_accuracy |
|
value: 54.141851651326476 |
|
- type: max_ap |
|
value: 55.650247173847944 |
|
- type: max_f1 |
|
value: 67.85195936139333 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 56.88999999999999 |
|
- type: ap |
|
value: 56.075855594697835 |
|
- type: f1 |
|
value: 56.31094564241924 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 10.023575042969506 |
|
- type: cos_sim_spearman |
|
value: 6.135169971774927 |
|
- type: euclidean_pearson |
|
value: 9.219072035876794 |
|
- type: euclidean_spearman |
|
value: 6.147945631319713 |
|
- type: manhattan_pearson |
|
value: 9.208267921398097 |
|
- type: manhattan_spearman |
|
value: 6.156480815791583 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 5.7230819885069435 |
|
- type: cos_sim_spearman |
|
value: 6.116111130034651 |
|
- type: euclidean_pearson |
|
value: 5.9142712292657205 |
|
- type: euclidean_spearman |
|
value: 6.115732664912588 |
|
- type: manhattan_pearson |
|
value: 5.892970378623552 |
|
- type: manhattan_spearman |
|
value: 6.100463075081302 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 18.353401358720397 |
|
- type: cos_sim_spearman |
|
value: 33.700002511275095 |
|
- type: euclidean_pearson |
|
value: 27.654605278731136 |
|
- type: euclidean_spearman |
|
value: 33.700002511275095 |
|
- type: manhattan_pearson |
|
value: 29.174977260571083 |
|
- type: manhattan_spearman |
|
value: 33.901862553268366 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.66287398363386 |
|
- type: cos_sim_spearman |
|
value: 45.60317964713117 |
|
- type: euclidean_pearson |
|
value: 47.434263079423 |
|
- type: euclidean_spearman |
|
value: 45.603111040461606 |
|
- type: manhattan_pearson |
|
value: 47.3272049502668 |
|
- type: manhattan_spearman |
|
value: 45.506449459872805 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 60.05480951659048 |
|
- type: mrr |
|
value: 69.58201013422746 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.159 |
|
- type: map_at_10 |
|
value: 2.624 |
|
- type: map_at_100 |
|
value: 3.259 |
|
- type: map_at_1000 |
|
value: 3.4090000000000003 |
|
- type: map_at_3 |
|
value: 1.9109999999999998 |
|
- type: map_at_5 |
|
value: 2.254 |
|
- type: mrr_at_1 |
|
value: 5.87 |
|
- type: mrr_at_10 |
|
value: 8.530999999999999 |
|
- type: mrr_at_100 |
|
value: 9.142999999999999 |
|
- type: mrr_at_1000 |
|
value: 9.229 |
|
- type: mrr_at_3 |
|
value: 7.498 |
|
- type: mrr_at_5 |
|
value: 8.056000000000001 |
|
- type: ndcg_at_1 |
|
value: 5.87 |
|
- type: ndcg_at_10 |
|
value: 4.641 |
|
- type: ndcg_at_100 |
|
value: 7.507999999999999 |
|
- type: ndcg_at_1000 |
|
value: 10.823 |
|
- type: ndcg_at_3 |
|
value: 4.775 |
|
- type: ndcg_at_5 |
|
value: 4.515000000000001 |
|
- type: precision_at_1 |
|
value: 5.87 |
|
- type: precision_at_10 |
|
value: 2.632 |
|
- type: precision_at_100 |
|
value: 0.762 |
|
- type: precision_at_1000 |
|
value: 0.166 |
|
- type: precision_at_3 |
|
value: 4.2299999999999995 |
|
- type: precision_at_5 |
|
value: 3.5450000000000004 |
|
- type: recall_at_1 |
|
value: 1.159 |
|
- type: recall_at_10 |
|
value: 4.816 |
|
- type: recall_at_100 |
|
value: 13.841999999999999 |
|
- type: recall_at_1000 |
|
value: 30.469 |
|
- type: recall_at_3 |
|
value: 2.413 |
|
- type: recall_at_5 |
|
value: 3.3300000000000005 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 26.786000000000005 |
|
- type: f1 |
|
value: 25.70512339530705 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 20.691386720429243 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 17.1882521768033 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.9000000000000004 |
|
- type: map_at_10 |
|
value: 4.051 |
|
- type: map_at_100 |
|
value: 4.277 |
|
- type: map_at_1000 |
|
value: 4.315 |
|
- type: map_at_3 |
|
value: 3.567 |
|
- type: map_at_5 |
|
value: 3.897 |
|
- type: mrr_at_1 |
|
value: 2.9000000000000004 |
|
- type: mrr_at_10 |
|
value: 4.051 |
|
- type: mrr_at_100 |
|
value: 4.277 |
|
- type: mrr_at_1000 |
|
value: 4.315 |
|
- type: mrr_at_3 |
|
value: 3.567 |
|
- type: mrr_at_5 |
|
value: 3.897 |
|
- type: ndcg_at_1 |
|
value: 2.9000000000000004 |
|
- type: ndcg_at_10 |
|
value: 4.772 |
|
- type: ndcg_at_100 |
|
value: 6.214 |
|
- type: ndcg_at_1000 |
|
value: 7.456 |
|
- type: ndcg_at_3 |
|
value: 3.805 |
|
- type: ndcg_at_5 |
|
value: 4.390000000000001 |
|
- type: precision_at_1 |
|
value: 2.9000000000000004 |
|
- type: precision_at_10 |
|
value: 0.7100000000000001 |
|
- type: precision_at_100 |
|
value: 0.146 |
|
- type: precision_at_1000 |
|
value: 0.025 |
|
- type: precision_at_3 |
|
value: 1.5 |
|
- type: precision_at_5 |
|
value: 1.18 |
|
- type: recall_at_1 |
|
value: 2.9000000000000004 |
|
- type: recall_at_10 |
|
value: 7.1 |
|
- type: recall_at_100 |
|
value: 14.6 |
|
- type: recall_at_1000 |
|
value: 24.9 |
|
- type: recall_at_3 |
|
value: 4.5 |
|
- type: recall_at_5 |
|
value: 5.8999999999999995 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 56.21999999999999 |
|
- type: ap |
|
value: 36.53654363772411 |
|
- type: f1 |
|
value: 54.922396485449674 |
|
|
|
--- |
|
|
|
# {MODEL_NAME} |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('{MODEL_NAME}') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') |
|
model = AutoModel.from_pretrained('{MODEL_NAME}') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) |
|
|
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 1468721 with parameters: |
|
``` |
|
{'batch_size': 160, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 1, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 100, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |