vxbrandon's picture
End of training
19f7f2b
metadata
license: apache-2.0
base_model: t5-large
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: t5-large_sst2_dense_epochs-5
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9575688073394495

t5-large_sst2_dense_epochs-5

This model is a fine-tuned version of t5-large on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6867
  • Accuracy: 0.9576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 0
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2069 0.38 50 0.4171 0.9438
0.1627 0.76 100 0.3713 0.9518
0.1641 1.14 150 0.4802 0.9553
0.1261 1.52 200 0.2517 0.9541
0.128 1.89 250 0.2427 0.9633
0.0765 2.27 300 0.5854 0.9622
0.1547 2.65 350 0.6896 0.9507
0.0705 3.03 400 0.5790 0.9484
0.0683 3.41 450 0.3680 0.9564
0.0889 3.79 500 0.6867 0.9576
0.1541 4.17 550 0.6979 0.9576
0.0689 4.55 600 0.9328 0.9507
0.0964 4.92 650 0.6852 0.9587

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1