vxbrandon commited on
Commit
3b64e1c
1 Parent(s): ffdc09a

End of training

Browse files
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Mistral_Sparse_refined_web_90p_2024-03-20
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Mistral_Sparse_refined_web_90p_2024-03-20
15
+
16
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 7.5087
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 1e-05
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 0
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 4
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 16
45
+ - total_eval_batch_size: 4
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - training_steps: 1
49
+
50
+ ### Training results
51
+
52
+
53
+
54
+ ### Framework versions
55
+
56
+ - Transformers 4.36.2
57
+ - Pytorch 2.1.2+cu121
58
+ - Datasets 2.15.0
59
+ - Tokenizers 0.15.0
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "SparseMistralforCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "sparsification_sftt.SparseMistralConfig",
9
+ "AutoModelForCausalLM": "sparsification_sftt.SparseMistralforCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 14336,
17
+ "max_position_embeddings": 32768,
18
+ "model_type": "sparse_mistral",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 8,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_theta": 10000.0,
24
+ "sliding_window": 4096,
25
+ "thresholds": [
26
+ 0.049147434532642365,
27
+ 0.06519558280706406,
28
+ 0.13340020179748535,
29
+ 0.12738214433193207,
30
+ 0.14944833517074585,
31
+ 0.15947842597961426,
32
+ 0.16950851678848267,
33
+ 0.17552657425403595,
34
+ 0.18154463171958923,
35
+ 0.1835506409406662,
36
+ 0.19558675587177277,
37
+ 0.20561684668064117,
38
+ 0.2096288800239563,
39
+ 0.21163490414619446,
40
+ 0.225677028298378,
41
+ 0.24172517657279968,
42
+ 0.2577733099460602,
43
+ 0.2678034007549286,
44
+ 0.2718154489994049,
45
+ 0.27382147312164307,
46
+ 0.27582746744155884,
47
+ 0.27582746744155884,
48
+ 0.27582746744155884,
49
+ 0.27582746744155884,
50
+ 0.27582746744155884,
51
+ 0.27582746744155884,
52
+ 0.277833491563797,
53
+ 0.277833491563797,
54
+ 0.35406216979026794,
55
+ 0.5305917859077454,
56
+ 0.8776329159736633,
57
+ 1.0
58
+ ],
59
+ "tie_word_embeddings": false,
60
+ "torch_dtype": "bfloat16",
61
+ "transformers_version": "4.36.2",
62
+ "use_cache": false,
63
+ "use_relu": false,
64
+ "use_resilu": false,
65
+ "use_sparse_model": true,
66
+ "use_sparse_predictor": false,
67
+ "use_sparse_regularization": false,
68
+ "vocab_size": 32000
69
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:facdb5fb934faf94fd03e8d85846592067e471f76a4db39f99e7ee3c94d1375a
3
+ size 4943162336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30c97e4d28b1d6af8ea9cfab3442bf2ccd854580f8be81b7219e47723e12a8f6
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8347e674a7286cee0c9c29c93e03b67c499a14434a7ec59d7bab11cdeadfb38c
3
+ size 4540516344
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
sparsification_sftt.py ADDED
@@ -0,0 +1,1509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import TrainerCallback, Trainer
2
+ from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
3
+ from peft import PeftModel
4
+ from datasets import Dataset
5
+ from transformers.utils import is_sagemaker_mp_enabled, is_sagemaker_dp_enabled
6
+ from typing import Any, Dict, Union, Optional, Tuple
7
+ from torch.nn import MSELoss
8
+ from transformers.utils import is_flash_attn_2_available, logging
9
+ import inspect
10
+ import warnings
11
+ import math
12
+ import torch
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+ import matplotlib.pyplot as plt
16
+ import numpy as np
17
+ import time
18
+ import os
19
+ import copy
20
+
21
+ from transformers.models.mistral.modeling_mistral import (
22
+ MistralMLP,
23
+ MistralAttention,
24
+ MistralModel,
25
+ MistralDecoderLayer,
26
+ MistralConfig,
27
+ MISTRAL_ATTENTION_CLASSES,
28
+ MistralRMSNorm,
29
+ MistralForCausalLM,
30
+ MistralFlashAttention2,
31
+ )
32
+ from experiments.models.sparse_mistral.svd_router import (
33
+ low_rank_approximation,
34
+ SparsePredictor,
35
+ )
36
+ from utils.utils import (
37
+ print_size_of_model,
38
+ is_running_deepspeed,
39
+ is_mainprocess,
40
+ get_datetime,
41
+ ds_print,
42
+ )
43
+
44
+ if is_flash_attn_2_available():
45
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
46
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
47
+
48
+ _flash_supports_window_size = "window_size" in list(
49
+ inspect.signature(flash_attn_func).parameters
50
+ )
51
+ logger = logging.get_logger(__name__)
52
+
53
+
54
+ class SparseSFTTTrainer(SFTTrainer):
55
+ def __init__(self, *args, **kwargs):
56
+ self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
57
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
58
+ self.use_spm_loss = False
59
+ self.freeze_original_weights = False
60
+ self.regularization_type = kwargs.pop(
61
+ "regularization_type", "L1 positive activation"
62
+ )
63
+ assert self.regularization_type in [
64
+ "L2 activation",
65
+ "L1 positive activation",
66
+ ], f"Invalid regularization type: {self.regularization_type}"
67
+ self.sparse_layers = []
68
+ self.sparse_decoder_layers = []
69
+ super(SparseSFTTTrainer, self).__init__(*args, **kwargs)
70
+
71
+ def initialize_sparse_silu_layers(self, model):
72
+ self.sparse_layers = [
73
+ m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
74
+ ]
75
+
76
+ def initialize_sparse_decoder_layers(self, model):
77
+ self.sparse_decoder_layers = [
78
+ m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
79
+ ]
80
+
81
+ def training_step(
82
+ self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
83
+ ) -> torch.Tensor:
84
+ """
85
+ Override the huggingface's training_step function to add a regularization term.
86
+ A regularization term is computed with intermediate values, which are freed after "backward()."
87
+ You need to set `retain_graph=True` inside `backward` function to keep the values.
88
+ """
89
+ model.train()
90
+ inputs = self._prepare_inputs(inputs)
91
+
92
+ with self.compute_loss_context_manager():
93
+ loss = self.compute_loss(model, inputs)
94
+
95
+ if self.args.n_gpu > 1:
96
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
97
+ if not self.freeze_original_weights:
98
+ if loss is not None:
99
+ self.accelerator.backward(loss, retain_graph=False)
100
+
101
+ if self.use_sparse_regularization:
102
+ regularization_loss = self.compute_regularization(model)
103
+ if self.args.n_gpu > 1:
104
+ regularization_loss = regularization_loss.mean()
105
+ if regularization_loss is not None:
106
+ self.accelerator.backward(regularization_loss, retain_graph=True)
107
+ loss += regularization_loss
108
+
109
+ if self.use_spm_loss:
110
+ spm_loss = self.compute_spm_loss(model)
111
+ if self.args.n_gpu > 1:
112
+ spm_loss = spm_loss.mean()
113
+ if spm_loss is not None:
114
+ self.accelerator.backward(spm_loss, retain_graph=False)
115
+ loss += spm_loss
116
+
117
+ return loss.detach() / self.args.gradient_accumulation_steps
118
+
119
+ def compute_regularization(self, model):
120
+ """
121
+ Compute a sparse regularization loss for SiLU
122
+ """
123
+ loss = 0
124
+ if len(self.sparse_layers) == 0:
125
+ self.initialize_sparse_silu_layers(model)
126
+ num_layers = len(self.sparse_layers)
127
+
128
+ for module in self.sparse_layers:
129
+ if module.activation_norm is not None:
130
+ loss += module.activation_norm
131
+
132
+ loss /= num_layers
133
+ loss *= self.regularization_coefficient
134
+
135
+ if self.state.global_step % 20 == 0 and loss != 0:
136
+ print("Negative relularizer loss: ", loss.item())
137
+ return loss
138
+
139
+ def compute_spm_loss(self, model):
140
+ loss = 0
141
+ if len(self.sparse_decoder_layers) == 0:
142
+ self.initialize_sparse_decoder_layers(model)
143
+ for module in self.sparse_decoder_layers:
144
+ if module.distill_loss != None:
145
+ loss += module.distill_loss
146
+ if self.state.global_step % 20 == 0 and loss != 0:
147
+ print("Sparse Predictor Distillation loss: ", loss.item())
148
+ return loss
149
+
150
+ # def compute_loss(self, model, inputs, return_outputs=False):
151
+ # loss = super().compute_loss(model, inputs, return_outputs)
152
+ #
153
+ # if is_sagemaker_mp_enabled():
154
+ # import smdistributed.modelparallel.torch as smp
155
+ # @smp.step()
156
+ # def smp_forward_backward(model, inputs, gradient_accumulation_steps=1):
157
+ # outputs = model(**inputs)
158
+ # loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
159
+ # loss /= gradient_accumulation_steps
160
+ # model.backward(loss)
161
+ # return loss
162
+ #
163
+ # loss_mb = smp_forward_backward(
164
+ # model, inputs, self.args.gradient_accumulation_steps
165
+ # )
166
+ # if self.use_sparse_regularization:
167
+ # return loss_mb.reduce_mean().detach().to(
168
+ # self.args.device
169
+ # ) + self.regularization_coefficient * self.compute_regularization(model)
170
+ # else:
171
+ # return loss_mb.reduce_mean().detach().to(self)
172
+ #
173
+ # if return_outputs:
174
+ # classification_loss, outputs = loss
175
+ # else:
176
+ # classification_loss = loss
177
+ #
178
+ # loss = classification_loss
179
+ # if self.use_sparse_regularization:
180
+ # regularization_loss = self.compute_regularization(model)
181
+ # loss += self.regularization_coefficient * regularization_loss
182
+ #
183
+ # return (loss, outputs) if return_outputs else loss
184
+
185
+
186
+ class SparseTrainer(Trainer):
187
+ def __init__(self, *args, **kwargs):
188
+ self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
189
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
190
+ self.use_spm_loss = False
191
+ self.freeze_original_weights = False
192
+ self.regularization_type = kwargs.pop(
193
+ "regularization_type", "L1 positive activation"
194
+ )
195
+ assert self.regularization_type in [
196
+ "L2 activation",
197
+ "L1 positive activation",
198
+ ], f"Invalid regularization type: {self.regularization_type}"
199
+ self.sparse_layers = []
200
+ self.sparse_decoder_layers = []
201
+ super(SparseTrainer, self).__init__(*args, **kwargs)
202
+
203
+ def initialize_sparse_silu_layers(self, model):
204
+ self.sparse_layers = [
205
+ m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
206
+ ]
207
+
208
+ def initialize_sparse_decoder_layers(self, model):
209
+ self.sparse_decoder_layers = [
210
+ m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
211
+ ]
212
+
213
+ def training_step(
214
+ self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
215
+ ) -> torch.Tensor:
216
+ """
217
+ Override the huggingface's training_step function to add a regularization term.
218
+ A regularization term is computed with intermediate values, which are freed after "backward()."
219
+ You need to set `retain_graph=True` inside `backward` function to keep the values.
220
+ """
221
+ model.train()
222
+ inputs = self._prepare_inputs(inputs)
223
+
224
+ with self.compute_loss_context_manager():
225
+ loss = self.compute_loss(model, inputs)
226
+
227
+ if self.args.n_gpu > 1:
228
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
229
+ if not self.freeze_original_weights:
230
+ if loss is not None:
231
+ self.accelerator.backward(loss, retain_graph=False)
232
+
233
+ if self.use_sparse_regularization:
234
+ regularization_loss = self.compute_regularization(model)
235
+ if self.args.n_gpu > 1:
236
+ regularization_loss = regularization_loss.mean()
237
+ if regularization_loss is not None:
238
+ self.accelerator.backward(regularization_loss, retain_graph=True)
239
+ loss += regularization_loss
240
+
241
+ if self.use_spm_loss:
242
+ spm_loss = self.compute_spm_loss(model)
243
+ if self.args.n_gpu > 1:
244
+ spm_loss = spm_loss.mean()
245
+ if spm_loss is not None:
246
+ self.accelerator.backward(spm_loss, retain_graph=False)
247
+ loss += spm_loss
248
+
249
+ return loss.detach() / self.args.gradient_accumulation_steps
250
+
251
+ def compute_regularization(self, model):
252
+ """
253
+ Compute a sparse regularization loss for SiLU
254
+ """
255
+ loss = 0
256
+ if len(self.sparse_layers) == 0:
257
+ self.initialize_sparse_silu_layers(model)
258
+ num_layers = len(self.sparse_layers)
259
+
260
+ for module in self.sparse_layers:
261
+ if module.activation_norm is not None:
262
+ loss += module.activation_norm
263
+
264
+ loss /= num_layers
265
+ loss *= self.regularization_coefficient
266
+
267
+ if self.state.global_step % 20 == 0 and loss != 0:
268
+ print("Negative relularizer loss: ", loss.item())
269
+ return loss
270
+
271
+ def compute_spm_loss(self, model):
272
+ loss = 0
273
+ if len(self.sparse_decoder_layers) == 0:
274
+ self.initialize_sparse_decoder_layers(model)
275
+ for module in self.sparse_decoder_layers:
276
+ if module.distill_loss != None:
277
+ loss += module.distill_loss
278
+ if self.state.global_step % 20 == 0 and loss != 0:
279
+ print("Sparse Predictor Distillation loss: ", loss.item())
280
+ return loss
281
+
282
+
283
+ class SparseSiLU(nn.SiLU):
284
+ def __init__(self, threshold):
285
+ super(SparseSiLU, self).__init__()
286
+ self.threshold = threshold
287
+ self.m = nn.Threshold(self.threshold, 0)
288
+
289
+ def set_new_threshold(self, threshold):
290
+ self.threshold = threshold
291
+ self.m = nn.Threshold(threshold, 0)
292
+
293
+ def forward(self, x):
294
+ act = super(SparseSiLU, self).forward(x)
295
+ return self.m(act) - self.m(-act)
296
+
297
+
298
+ def rotate_half(x):
299
+ """Rotates half the hidden dims of the input."""
300
+ x1 = x[..., : x.shape[-1] // 2]
301
+ x2 = x[..., x.shape[-1] // 2 :]
302
+ return torch.cat((-x2, x1), dim=-1)
303
+
304
+
305
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
306
+ """Applies Rotary Position Embedding to the query and key tensors.
307
+
308
+ Args:
309
+ q (`torch.Tensor`): The query tensor.
310
+ k (`torch.Tensor`): The key tensor.
311
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
312
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
313
+ position_ids (`torch.Tensor`):
314
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
315
+ used to pass offsetted position ids when working with a KV-cache.
316
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
317
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
318
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
319
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
320
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
321
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
322
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
323
+ Returns:
324
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
325
+ """
326
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
327
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
328
+ q_embed = (q * cos) + (rotate_half(q) * sin)
329
+ k_embed = (k * cos) + (rotate_half(k) * sin)
330
+ return q_embed, k_embed
331
+
332
+
333
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
334
+ """
335
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
336
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
337
+ """
338
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
339
+ if n_rep == 1:
340
+ return hidden_states
341
+ hidden_states = hidden_states[:, :, None, :, :].expand(
342
+ batch, num_key_value_heads, n_rep, slen, head_dim
343
+ )
344
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
345
+
346
+
347
+ def _get_unpad_data(attention_mask):
348
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
349
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
350
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
351
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
352
+ return (
353
+ indices,
354
+ cu_seqlens,
355
+ max_seqlen_in_batch,
356
+ )
357
+
358
+
359
+ class SparseMistralAttention(MistralFlashAttention2):
360
+ """
361
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
362
+ and "Generating Long Sequences with Sparse Transformers".
363
+ """
364
+
365
+ def __init__(self, *args, **kwargs):
366
+ super().__init__(*args, **kwargs)
367
+ self.counts = 0
368
+
369
+ def forward(
370
+ self,
371
+ hidden_states: torch.Tensor,
372
+ attention_mask: Optional[torch.Tensor] = None,
373
+ position_ids: Optional[torch.LongTensor] = None,
374
+ past_key_value: Optional = None,
375
+ output_attentions: bool = False,
376
+ use_cache: bool = False,
377
+ **kwargs,
378
+ ):
379
+ if "padding_mask" in kwargs:
380
+ warnings.warn(
381
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
382
+ )
383
+
384
+ # overwrite attention_mask with padding_mask
385
+ attention_mask = kwargs.pop("padding_mask")
386
+ bsz, q_len, _ = hidden_states.size()
387
+ mask = abs(hidden_states - hidden_states.mean()) < 0.8 * hidden_states.std()
388
+ hidden_states[mask] = 0
389
+ if self.counts <= 1:
390
+ print(f"Attention {self.layer_idx}: ", (hidden_states==0).float().mean())
391
+ self.counts += 1
392
+
393
+ query_states = self.q_proj(hidden_states)
394
+ key_states = self.k_proj(hidden_states)
395
+ value_states = self.v_proj(hidden_states)
396
+
397
+ query_states = query_states.view(
398
+ bsz, q_len, self.num_heads, self.head_dim
399
+ ).transpose(1, 2)
400
+ key_states = key_states.view(
401
+ bsz, q_len, self.num_key_value_heads, self.head_dim
402
+ ).transpose(1, 2)
403
+ value_states = value_states.view(
404
+ bsz, q_len, self.num_key_value_heads, self.head_dim
405
+ ).transpose(1, 2)
406
+
407
+ kv_seq_len = key_states.shape[-2]
408
+ if past_key_value is not None:
409
+ if self.layer_idx is None:
410
+ raise ValueError(
411
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
412
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
413
+ "with a layer index."
414
+ )
415
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
416
+
417
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
418
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
419
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
420
+
421
+ query_states, key_states = apply_rotary_pos_emb(
422
+ query_states, key_states, cos, sin, position_ids
423
+ )
424
+
425
+ use_sliding_windows = (
426
+ _flash_supports_window_size
427
+ and getattr(self.config, "sliding_window", None) is not None
428
+ and kv_seq_len > self.config.sliding_window
429
+ )
430
+
431
+ if not _flash_supports_window_size:
432
+ logger.warning_once(
433
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
434
+ " make sure to upgrade flash-attn library."
435
+ )
436
+
437
+ if past_key_value is not None:
438
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
439
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
440
+ if (
441
+ getattr(self.config, "sliding_window", None) is not None
442
+ and kv_seq_len > self.config.sliding_window
443
+ and cache_has_contents
444
+ ):
445
+ slicing_tokens = 1 - self.config.sliding_window
446
+
447
+ past_key = past_key_value[self.layer_idx][0]
448
+ past_value = past_key_value[self.layer_idx][1]
449
+
450
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
451
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
452
+
453
+ if past_key.shape[-2] != self.config.sliding_window - 1:
454
+ raise ValueError(
455
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
456
+ f" {past_key.shape}"
457
+ )
458
+
459
+ if attention_mask is not None:
460
+ attention_mask = attention_mask[:, slicing_tokens:]
461
+ attention_mask = torch.cat(
462
+ [attention_mask, torch.ones_like(attention_mask[:, -1:])],
463
+ dim=-1,
464
+ )
465
+
466
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
467
+ key_states, value_states = past_key_value.update(
468
+ key_states, value_states, self.layer_idx, cache_kwargs
469
+ )
470
+
471
+ # repeat k/v heads if n_kv_heads < n_heads
472
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
473
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
474
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
475
+
476
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
477
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
478
+ # cast them back in float16 just to be sure everything works as expected.
479
+ input_dtype = query_states.dtype
480
+ if input_dtype == torch.float32:
481
+ if torch.is_autocast_enabled():
482
+ target_dtype = torch.get_autocast_gpu_dtype()
483
+ # Handle the case where the model is quantized
484
+ elif hasattr(self.config, "_pre_quantization_dtype"):
485
+ target_dtype = self.config._pre_quantization_dtype
486
+ else:
487
+ target_dtype = self.q_proj.weight.dtype
488
+
489
+ logger.warning_once(
490
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
491
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
492
+ f" {target_dtype}."
493
+ )
494
+
495
+ query_states = query_states.to(target_dtype)
496
+ key_states = key_states.to(target_dtype)
497
+ value_states = value_states.to(target_dtype)
498
+
499
+ # Reashape to the expected shape for Flash Attention
500
+ query_states = query_states.transpose(1, 2)
501
+ key_states = key_states.transpose(1, 2)
502
+ value_states = value_states.transpose(1, 2)
503
+
504
+ attn_output = self._flash_attention_forward(
505
+ query_states,
506
+ key_states,
507
+ value_states,
508
+ attention_mask,
509
+ q_len,
510
+ dropout=dropout_rate,
511
+ use_sliding_windows=use_sliding_windows,
512
+ )
513
+
514
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
515
+ attn_output = self.o_proj(attn_output)
516
+
517
+ if not output_attentions:
518
+ attn_weights = None
519
+
520
+ return attn_output, attn_weights, past_key_value
521
+
522
+ def _flash_attention_forward(
523
+ self,
524
+ query_states,
525
+ key_states,
526
+ value_states,
527
+ attention_mask,
528
+ query_length,
529
+ dropout=0.0,
530
+ softmax_scale=None,
531
+ use_sliding_windows=False,
532
+ ):
533
+ """
534
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
535
+ first unpad the input, then computes the attention scores and pad the final attention scores.
536
+
537
+ Args:
538
+ query_states (`torch.Tensor`):
539
+ Input query states to be passed to Flash Attention API
540
+ key_states (`torch.Tensor`):
541
+ Input key states to be passed to Flash Attention API
542
+ value_states (`torch.Tensor`):
543
+ Input value states to be passed to Flash Attention API
544
+ attention_mask (`torch.Tensor`):
545
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
546
+ position of padding tokens and 1 for the position of non-padding tokens.
547
+ dropout (`float`):
548
+ Attention dropout
549
+ softmax_scale (`float`, *optional*):
550
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
551
+ use_sliding_windows (`bool`, *optional*):
552
+ Whether to activate sliding window attention.
553
+ """
554
+ if not self._flash_attn_uses_top_left_mask:
555
+ causal = self.is_causal
556
+ else:
557
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
558
+ causal = self.is_causal and query_length != 1
559
+
560
+ # Contains at least one padding token in the sequence
561
+ if attention_mask is not None:
562
+ batch_size = query_states.shape[0]
563
+ (
564
+ query_states,
565
+ key_states,
566
+ value_states,
567
+ indices_q,
568
+ cu_seq_lens,
569
+ max_seq_lens,
570
+ ) = self._upad_input(
571
+ query_states, key_states, value_states, attention_mask, query_length
572
+ )
573
+
574
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
575
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
576
+
577
+ if not use_sliding_windows:
578
+ attn_output_unpad = flash_attn_varlen_func(
579
+ query_states,
580
+ key_states,
581
+ value_states,
582
+ cu_seqlens_q=cu_seqlens_q,
583
+ cu_seqlens_k=cu_seqlens_k,
584
+ max_seqlen_q=max_seqlen_in_batch_q,
585
+ max_seqlen_k=max_seqlen_in_batch_k,
586
+ dropout_p=dropout,
587
+ softmax_scale=softmax_scale,
588
+ causal=causal,
589
+ )
590
+ else:
591
+ attn_output_unpad = flash_attn_varlen_func(
592
+ query_states,
593
+ key_states,
594
+ value_states,
595
+ cu_seqlens_q=cu_seqlens_q,
596
+ cu_seqlens_k=cu_seqlens_k,
597
+ max_seqlen_q=max_seqlen_in_batch_q,
598
+ max_seqlen_k=max_seqlen_in_batch_k,
599
+ dropout_p=dropout,
600
+ softmax_scale=softmax_scale,
601
+ causal=causal,
602
+ window_size=(
603
+ self.config.sliding_window,
604
+ self.config.sliding_window,
605
+ ),
606
+ )
607
+
608
+ attn_output = pad_input(
609
+ attn_output_unpad, indices_q, batch_size, query_length
610
+ )
611
+ else:
612
+ if not use_sliding_windows:
613
+ attn_output = flash_attn_func(
614
+ query_states,
615
+ key_states,
616
+ value_states,
617
+ dropout,
618
+ softmax_scale=softmax_scale,
619
+ causal=causal,
620
+ )
621
+ else:
622
+ attn_output = flash_attn_func(
623
+ query_states,
624
+ key_states,
625
+ value_states,
626
+ dropout,
627
+ softmax_scale=softmax_scale,
628
+ causal=causal,
629
+ window_size=(
630
+ self.config.sliding_window,
631
+ self.config.sliding_window,
632
+ ),
633
+ )
634
+
635
+ return attn_output
636
+
637
+ def _upad_input(
638
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
639
+ ):
640
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
641
+
642
+ # On the first iteration we need to properly re-create the padding mask
643
+ # by slicing it on the proper place
644
+ if kv_seq_len != attention_mask.shape[-1]:
645
+ attention_mask_num_tokens = attention_mask.shape[-1]
646
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
647
+
648
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
649
+
650
+ key_layer = index_first_axis(
651
+ key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
652
+ )
653
+ value_layer = index_first_axis(
654
+ value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
655
+ )
656
+
657
+ if query_length == kv_seq_len:
658
+ query_layer = index_first_axis(
659
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim),
660
+ indices_k,
661
+ )
662
+ cu_seqlens_q = cu_seqlens_k
663
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
664
+ indices_q = indices_k
665
+ elif query_length == 1:
666
+ max_seqlen_in_batch_q = 1
667
+ cu_seqlens_q = torch.arange(
668
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
669
+ ) # There is a memcpy here, that is very bad.
670
+ indices_q = cu_seqlens_q[:-1]
671
+ query_layer = query_layer.squeeze(1)
672
+ else:
673
+ # The -q_len: slice assumes left padding.
674
+ attention_mask = attention_mask[:, -query_length:]
675
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
676
+ query_layer, attention_mask
677
+ )
678
+
679
+ return (
680
+ query_layer,
681
+ key_layer,
682
+ value_layer,
683
+ indices_q,
684
+ (cu_seqlens_q, cu_seqlens_k),
685
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
686
+ )
687
+
688
+ # def forward(
689
+ # self,
690
+ # hidden_states: torch.Tensor,
691
+ # attention_mask: Optional[torch.Tensor] = None,
692
+ # position_ids: Optional[torch.LongTensor] = None,
693
+ # past_key_value: Optional = None,
694
+ # output_attentions: bool = False,
695
+ # use_cache: bool = False,
696
+ # **kwargs,
697
+ # ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
698
+ # if "padding_mask" in kwargs:
699
+ # warnings.warn(
700
+ # "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
701
+ # )
702
+ # bsz, q_len, _ = hidden_states.size()
703
+ # mask = abs(hidden_states - hidden_states.mean()) < 0.8 * hidden_states.std()
704
+ # hidden_states[mask] = 0
705
+ # if self.counts <= 1:
706
+ # print(f"Attention {self.layer_idx}: ", (hidden_states==0).float().mean())
707
+ # self.counts += 1
708
+ #
709
+ # query_states = self.q_proj(hidden_states)
710
+ # key_states = self.k_proj(hidden_states)
711
+ # value_states = self.v_proj(hidden_states)
712
+ #
713
+ # query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
714
+ # key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
715
+ # value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
716
+ #
717
+ # kv_seq_len = key_states.shape[-2]
718
+ # if past_key_value is not None:
719
+ # if self.layer_idx is None:
720
+ # raise ValueError(
721
+ # f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
722
+ # "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
723
+ # "with a layer index."
724
+ # )
725
+ # kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
726
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
727
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
728
+ #
729
+ # if past_key_value is not None:
730
+ # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
731
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
732
+ #
733
+ # # repeat k/v heads if n_kv_heads < n_heads
734
+ # key_states = repeat_kv(key_states, self.num_key_value_groups)
735
+ # value_states = repeat_kv(value_states, self.num_key_value_groups)
736
+ #
737
+ # attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
738
+ #
739
+ # if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
740
+ # raise ValueError(
741
+ # f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
742
+ # f" {attn_weights.size()}"
743
+ # )
744
+ #
745
+ # if attention_mask is not None:
746
+ # if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
747
+ # raise ValueError(
748
+ # f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
749
+ # )
750
+ #
751
+ # attn_weights = attn_weights + attention_mask
752
+ #
753
+ # # upcast attention to fp32
754
+ # attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
755
+ # attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
756
+ # attn_output = torch.matmul(attn_weights, value_states)
757
+ #
758
+ # if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
759
+ # raise ValueError(
760
+ # f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
761
+ # f" {attn_output.size()}"
762
+ # )
763
+ #
764
+ # attn_output = attn_output.transpose(1, 2).contiguous()
765
+ # attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
766
+ #
767
+ # attn_output = self.o_proj(attn_output)
768
+ #
769
+ # if not output_attentions:
770
+ # attn_weights = None
771
+ #
772
+ # return attn_output, attn_weights, past_key_value
773
+
774
+
775
+ class MistralSparseSiluMLP(MistralMLP):
776
+ def __init__(self, config, *args, **kwargs):
777
+ super().__init__(config)
778
+ self.swish_outputs = None
779
+ self.relu = nn.ReLU()
780
+ self.resilu = nn.Sequential(nn.SiLU())
781
+
782
+ self.kill_sparse_swish_outputs = False
783
+ self.dead_percentage = 0
784
+ self.is_stats = False
785
+ self.visit_counts = 0
786
+
787
+ # Hyperparameters to tune
788
+ self.dead_threshold = kwargs.pop("dead_threshold", 0)
789
+ self.pre_mlp_dead_threshold = kwargs.pop("pre_mlp_dead_threshold", 0)
790
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", True)
791
+ self.regularization_type = kwargs.pop(
792
+ "regularization_type", "L1 regularization"
793
+ )
794
+ self.regularization_threshold = kwargs.pop("regularization_threshold", 0.5)
795
+ self.use_relu = kwargs.pop("use_relu", False)
796
+ self.use_resilu = kwargs.pop("use_resilu", False)
797
+ self.activation_norm = None
798
+
799
+ # Activation Histograms
800
+ self.is_collect_histogram = False
801
+ num_bins = 1000
802
+ self.histogram_bins = torch.linspace(-1, 1, num_bins - 2)
803
+ self.histogram_bins = torch.cat(
804
+ [torch.tensor([-torch.inf]), self.histogram_bins, torch.tensor([torch.inf])]
805
+ )
806
+ self.pre_mlp_hist_counts = torch.zeros(num_bins - 1)
807
+ self.pre_act_hist_counts = torch.zeros(num_bins - 1)
808
+ self.post_act_hist_counts = torch.zeros(num_bins - 1)
809
+ self.t = 0
810
+ self.count = 0
811
+ self.agg_sparsity = 0
812
+
813
+ # Sparse activation function
814
+ self.sparse_act_fn = SparseSiLU(threshold=self.dead_threshold)
815
+
816
+ def activate_stats(self, is_collect_histogram: bool = True):
817
+ self.is_stats = True
818
+ self.dead_percentage = 0
819
+ self.visit_counts = 0
820
+ self.is_collect_histogram = is_collect_histogram
821
+ self.histogram_counts = torch.zeros(2000) # .to(self.down_proj.weight.device)
822
+
823
+ def deactivate_stats(self):
824
+ self.is_stats = False
825
+
826
+ def collect_stats(
827
+ self,
828
+ pre_mlp,
829
+ pre_activation,
830
+ post_activation,
831
+ ):
832
+ start_time = time.time()
833
+ pre_activation = pre_activation.float().cpu().detach()
834
+ post_activation = post_activation.float().cpu().detach()
835
+ # self.histogram_bins=self.histogram_bins.to(pre_activation.device).type(pre_activation.dtype)
836
+ self.pre_mlp_hist_counts = torch.histogram(pre_mlp, bins=self.histogram_bins)[0]
837
+ self.pre_act_hist_counts += torch.histogram(
838
+ pre_activation, bins=self.histogram_bins
839
+ )[0]
840
+ self.post_act_hist_counts += torch.histogram(
841
+ torch.abs(post_activation), bins=self.histogram_bins
842
+ )[0]
843
+ self.t += time.time() - start_time
844
+ if self.visit_counts % 30 == 0:
845
+ print(f"Time taken to collect stats: {self.t}s.")
846
+
847
+ def forward(
848
+ self,
849
+ x,
850
+ sp_mask: torch.tensor = None,
851
+ ):
852
+ """
853
+ If kill_sparse_swish_outputs is set to False, this layer functions exactly like a normal MLP layer.
854
+ """
855
+ if sp_mask != None: # When sparse mask is given
856
+ return self.down_proj(
857
+ self.sparse_act_fn(self.gate_proj(x) * sp_mask) * self.up_proj(x)
858
+ ) # Todo: This doesn't accelerate runtime (instead slowing down)
859
+
860
+ elif self.use_relu or self.use_resilu:
861
+ if self.use_relu:
862
+ post_act = self.relu(self.gate_proj(x))
863
+ else:
864
+ post_act = self.resilu(self.gate_proj(x))
865
+ self.count += 1
866
+ if self.count <= 1:
867
+ print("USING RELU or ReSiLU!!!!")
868
+
869
+ if self.is_stats:
870
+ dead_neurons = post_act == 0
871
+ dead_percentage = dead_neurons.float().mean()
872
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
873
+
874
+ self.dead_percentage = (
875
+ self.dead_percentage * self.visit_counts + dead_percentage
876
+ ) / (self.visit_counts + 1)
877
+ self.agg_sparsity = (
878
+ self.agg_sparsity * self.visit_counts + agg_sparsity
879
+ ) / (self.visit_counts + 1)
880
+ self.visit_counts += 1
881
+
882
+ return self.down_proj(post_act * self.up_proj(x))
883
+
884
+ else:
885
+ self.count += 1
886
+ # x[abs(x) < 0.7 * x.std()] = 0
887
+ if self.count <= 1:
888
+ print("USING SparseSILU!!!!")
889
+ # print(x.mean(), x.std(), x.max(), x.min())
890
+ # print(f"pre mlp sparsity: {(x==0).float().mean()}")
891
+ pre_act = self.gate_proj(x)
892
+ post_act = self.act_fn(pre_act)
893
+ if self.kill_sparse_swish_outputs:
894
+ dead_neurons = post_act.abs() <= self.dead_threshold
895
+ # print("pre act sparsity: ", (pre_act==0).float().mean())
896
+
897
+ dead_percentage = dead_neurons.float().mean()
898
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
899
+
900
+ if self.is_stats:
901
+ self.dead_percentage = (
902
+ self.dead_percentage * self.visit_counts + dead_percentage
903
+ ) / (self.visit_counts + 1)
904
+ self.agg_sparsity = (
905
+ self.agg_sparsity * self.visit_counts + agg_sparsity
906
+ ) / (self.visit_counts + 1)
907
+ self.visit_counts += 1
908
+
909
+ self.a = dead_percentage
910
+
911
+ # print(self.agg_sparsity)
912
+
913
+ # Collect histogram stats
914
+ if (
915
+ self.is_collect_histogram
916
+ and pre_act.eq(0).float().mean() < 0.99
917
+ ): # Padded dataset
918
+ self.collect_stats(x, pre_act, post_act)
919
+
920
+ post_act[dead_neurons] = 0
921
+ if self.count <= 1:
922
+ print(f"sparsity: {dead_percentage}/ pre-activation sparsity: {(x==0).float().mean()}")
923
+
924
+ out = self.down_proj(post_act * self.up_proj(x))
925
+ if self.use_sparse_regularization:
926
+ if self.regularization_type == "L1 regularization":
927
+ self.activation_norm = torch.abs(post_act)[
928
+ post_act < self.regularization_threshold
929
+ ].mean()
930
+ elif self.regularization_type == "L2 regularization":
931
+ self.activation_norm = torch.sqrt(
932
+ torch.square(post_act)[post_act < self.regularization_threshold]
933
+ ).mean()
934
+
935
+ return out
936
+
937
+
938
+ class SparseMistralDecoderLayer(MistralDecoderLayer):
939
+ def __init__(
940
+ self,
941
+ config: MistralConfig,
942
+ layer_idx: int,
943
+ decoder_layer: MistralDecoderLayer,
944
+ init_svd: bool = True,
945
+ *args,
946
+ **kwargs,
947
+ ):
948
+ assert isinstance(
949
+ decoder_layer.mlp, MistralSparseSiluMLP
950
+ ), f"{type(decoder_layer.mlp)} should MistralSparseSiluMLP."
951
+
952
+ super().__init__(config, layer_idx)
953
+ self.hidden_size = config.hidden_size
954
+ self.intermediate_size = config.intermediate_size
955
+
956
+ self.init_svd = init_svd
957
+ self.self_attn = decoder_layer.self_attn
958
+
959
+ self.mlp = decoder_layer.mlp
960
+ self.input_layernorm = decoder_layer.input_layernorm
961
+ self.post_attention_layernorm = decoder_layer.post_attention_layernorm
962
+
963
+ # Sparse predictor for mlp (initialized with SVD decomposed matrix)
964
+ self.low_rank = kwargs.pop("low_rank", 64)
965
+ self.sparse_act_func = decoder_layer.mlp.sparse_act_fn
966
+
967
+ print(
968
+ f"Setting {layer_idx}th mlp layer's sparse predictor... svd init: {init_svd}"
969
+ )
970
+ self.sp_mlp = low_rank_approximation(
971
+ decoder_layer.mlp.gate_proj,
972
+ act_func=self.sparse_act_func,
973
+ init_svd=init_svd,
974
+ )
975
+ self.use_async = kwargs.pop("use_async", False)
976
+ self.use_sparse_predictor = False
977
+ self.distill_loss = None
978
+
979
+ def forward(
980
+ self,
981
+ hidden_states: torch.Tensor,
982
+ attention_mask: Optional[torch.Tensor] = None,
983
+ position_ids: Optional[torch.LongTensor] = None,
984
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
985
+ output_attentions: Optional[bool] = False,
986
+ use_cache: Optional[bool] = False,
987
+ **kwargs,
988
+ ) -> Tuple[
989
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
990
+ ]:
991
+ print("hidden_states shape: ", hidden_states.shape)
992
+ if "padding_mask" in kwargs:
993
+ warnings.warn(
994
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
995
+ )
996
+
997
+ residual = hidden_states
998
+ sp_mask = None
999
+
1000
+ if self.use_async:
1001
+ sp_mask = self.sp_mlp(hidden_states)
1002
+
1003
+ hidden_states = self.input_layernorm(hidden_states)
1004
+
1005
+ # Self Attention
1006
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1007
+ hidden_states=hidden_states,
1008
+ attention_mask=attention_mask,
1009
+ position_ids=position_ids,
1010
+ past_key_value=past_key_value,
1011
+ output_attentions=output_attentions,
1012
+ use_cache=use_cache,
1013
+ )
1014
+ hidden_states = residual + hidden_states
1015
+
1016
+ # Fully Connected
1017
+ residual = hidden_states
1018
+ hidden_states = self.post_attention_layernorm(hidden_states)
1019
+
1020
+ if not self.use_async:
1021
+ sp_mask = self.sp_mlp(hidden_states)
1022
+
1023
+ # Compute distillation loss
1024
+ gating_output = self.mlp.sparse_act_fn(self.mlp.gate_proj(hidden_states))
1025
+ loss_func = MSELoss()
1026
+ self.distill_loss = loss_func(sp_mask, gating_output)
1027
+
1028
+ # Convert sp mask into binary form
1029
+ sp_mask = sp_mask > 0
1030
+
1031
+ if self.training:
1032
+ sp_mask = None
1033
+ # if not self.use_sparse_predictor:
1034
+ # sp_mask = None
1035
+
1036
+ hidden_states = self.mlp(hidden_states, sp_mask)
1037
+ hidden_states = residual + hidden_states
1038
+
1039
+ outputs = (hidden_states,)
1040
+
1041
+ if output_attentions:
1042
+ outputs += (self_attn_weights,)
1043
+
1044
+ if use_cache:
1045
+ outputs += (present_key_value,)
1046
+
1047
+ return outputs
1048
+
1049
+
1050
+ class SparseMistralConfig(MistralConfig):
1051
+ model_type = "sparse_mistral"
1052
+
1053
+ def __init__(self, **kwargs):
1054
+ super().__init__(**kwargs)
1055
+
1056
+
1057
+ class SparseMistralforCausalLM(MistralForCausalLM):
1058
+ config_class = SparseMistralConfig
1059
+
1060
+ def __init__(self, config):
1061
+ super().__init__(config)
1062
+ self.config = config
1063
+ if config.use_sparse_model:
1064
+ self.apply_sparse_mlp()
1065
+ if config.thresholds is not None:
1066
+ for idx, m in enumerate(self.model.layers):
1067
+ if isinstance(m.mlp, MistralSparseSiluMLP):
1068
+ m.mlp.dead_threshold = config.thresholds[idx]
1069
+ m.mlp.sparse_act_fn.set_new_threshold(m.mlp.dead_threshold)
1070
+ m.mlp.kill_sparse_swish_outputs = True
1071
+ m.mlp.use_relu = getattr(config, "use_relu", False)
1072
+ m.mlp.use_resilu = getattr(config, "use_resilu", False)
1073
+ if config.use_sparse_predictor:
1074
+ self.apply_sparse_predictor(init_svd=config.init_svd)
1075
+
1076
+ def apply_sparse_mlp(self):
1077
+ apply_mistral_sparse_silu_mlp(
1078
+ self,
1079
+ config=self.config,
1080
+ use_sparse_regularization=self.config.use_sparse_regularization,
1081
+ )
1082
+
1083
+ def apply_sparse_predictor(self, init_svd: bool = True):
1084
+ apply_mistral_sparse_decoder_layer(self, config=self.config, init_svd=init_svd)
1085
+
1086
+
1087
+ class GracefulRegularizationScheduler(TrainerCallback):
1088
+ def __init__(
1089
+ self,
1090
+ num_warmup_steps=40,
1091
+ is_enabled: bool = False,
1092
+ model_name: str = "mistral",
1093
+ test_dataset: Dataset = None,
1094
+ targeted_sparsity: float = 0.5,
1095
+ keep_regularization_with_kill: bool = False,
1096
+ ):
1097
+ """Scheduler for regularizing the model first before applying the dead threshold.
1098
+
1099
+ :param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
1100
+ :param increment_ratio: by how much to increase the dead threshold.
1101
+ For example, 0.5 means "increase the threshold by 0.5 * desired threshold
1102
+ """
1103
+ self.num_warmup_steps = num_warmup_steps
1104
+ self.is_enabled = is_enabled
1105
+ self.model_name = model_name
1106
+ self.test_dataset = test_dataset
1107
+ self.targeted_sparsity = targeted_sparsity
1108
+ self.keep_regularization_with_kill = keep_regularization_with_kill
1109
+ self.act_hist_path = (
1110
+ f"/matx/u/vxbrando/histograms/warm_up_reg_{targeted_sparsity}/act_hist.pt"
1111
+ )
1112
+ if self.is_enabled:
1113
+ print("GracefulRegularizationScheduler is enabled.")
1114
+ self.trainer = None
1115
+
1116
+ def set_trainer(self, trainer):
1117
+ self.trainer = trainer
1118
+
1119
+ def on_step_end(self, args, state, control, **kwargs):
1120
+ if not self.is_enabled:
1121
+ return
1122
+
1123
+ model = kwargs["model"]
1124
+ if isinstance(model, PeftModel):
1125
+ base_model = model.get_base_model()
1126
+ else:
1127
+ base_model = model
1128
+
1129
+ if state.global_step == 1:
1130
+ ds_print("Setting an initial reg threshold to 0.1")
1131
+ set_regularization_threshold(base_model, 0.1)
1132
+
1133
+ # if state.global_step >= self.num_warmup_steps and state.global_step % 50 == 0:
1134
+ if state.global_step == self.num_warmup_steps:
1135
+ activate_stats(base_model)
1136
+ enable_sparse_silu(base_model)
1137
+ self.trainer.evaluate()
1138
+ save_act_hist(base_model, self.act_hist_path)
1139
+ set_sparse_threshold(base_model, self.targeted_sparsity, True)
1140
+ deactivate_stats(base_model)
1141
+ self.trainer.use_sparse_regularization = self.keep_regularization_with_kill
1142
+ # set_layer_specific_regularization(model.get_base_model())
1143
+ print_dead_neuron_stats(model.get_base_model())
1144
+
1145
+ if state.global_step % 2000 == 0:
1146
+ if is_mainprocess():
1147
+ ds_print(
1148
+ f"Saving to /scr/lukeai/{self.model_name}_{state.global_step}.pt",
1149
+ )
1150
+ torch.save(
1151
+ model.state_dict(),
1152
+ f"/scr/lukeai/{self.model_name}_{state.global_step}.pt",
1153
+ )
1154
+
1155
+
1156
+ class GradualSparsificationScheduler(TrainerCallback):
1157
+ def __init__(
1158
+ self,
1159
+ num_warmup_steps=40,
1160
+ increment_ratio=0.5,
1161
+ is_enabled: bool = False,
1162
+ model_name: str = "mistral",
1163
+ ):
1164
+ """Scheduler for gradually increasing a dead threshold until it reaches the desired threshold.
1165
+
1166
+ :param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
1167
+ :param increment_ratio: by how much to increase the dead threshold.
1168
+ For example, 0.5 means "increase the threshold by 0.5 * desired threshold
1169
+ """
1170
+ self.num_warmup_steps = num_warmup_steps
1171
+ self.increment_ratio = increment_ratio
1172
+ self.step_size = int(num_warmup_steps * increment_ratio)
1173
+ self.is_enabled = is_enabled
1174
+ self.model_name = model_name
1175
+
1176
+ def on_step_end(self, args, state, control, **kwargs):
1177
+ model = kwargs["model"]
1178
+
1179
+ if not self.is_enabled:
1180
+ if state.global_step <= 10:
1181
+ for module in model.modules():
1182
+ if isinstance(module, MistralSparseSiluMLP):
1183
+ module.current_dead_threshold = module.dead_threshold
1184
+ return
1185
+
1186
+ current_dead_threshold = 0
1187
+ desired_dead_threshold = 0
1188
+
1189
+ if is_mainprocess():
1190
+ ds_print(state.global_step)
1191
+
1192
+ if state.global_step % self.step_size == 2:
1193
+ for module in model.modules():
1194
+ if isinstance(module, MistralSparseSiluMLP):
1195
+ desired_dead_threshold = copy.deepcopy(module.dead_threshold)
1196
+ current_dead_threshold = module.current_dead_threshold
1197
+ current_dead_threshold += (
1198
+ self.increment_ratio * desired_dead_threshold
1199
+ )
1200
+ module.current_dead_threshold = min(
1201
+ desired_dead_threshold, current_dead_threshold
1202
+ )
1203
+
1204
+ if is_running_deepspeed and is_mainprocess():
1205
+ ds_print(
1206
+ state.global_step,
1207
+ current_dead_threshold,
1208
+ desired_dead_threshold,
1209
+ )
1210
+
1211
+ if state.global_step % 2000 == 0:
1212
+ if is_running_deepspeed and is_mainprocess():
1213
+ ds_print(
1214
+ f"Saving to /matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
1215
+ )
1216
+ torch.save(
1217
+ model.state_dict(),
1218
+ f"/matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
1219
+ )
1220
+
1221
+
1222
+ def get_sparse_mistral_config(
1223
+ config: MistralConfig,
1224
+ use_sparse_model=False,
1225
+ use_sparse_predictor=False,
1226
+ use_sparse_regularization=False,
1227
+ thresholds=None,
1228
+ ):
1229
+ new_config = SparseMistralConfig()
1230
+ new_config.__dict__.update(config.__dict__)
1231
+ config = new_config
1232
+ config.use_sparse_model = use_sparse_model
1233
+ config.use_sparse_predictor = use_sparse_predictor
1234
+ config.use_sparse_regularization = use_sparse_regularization
1235
+ config.thresholds = thresholds
1236
+
1237
+ return config
1238
+
1239
+
1240
+ def apply_mistral_sparse_silu_mlp(
1241
+ model,
1242
+ config,
1243
+ use_sparse_regularization: bool = False,
1244
+ ):
1245
+ # counts = 0
1246
+ for layer in model.model.layers:
1247
+ # counts += 1
1248
+ # if counts < 4:
1249
+ # continue
1250
+ original_mlp = layer.mlp
1251
+ new_mlp = MistralSparseSiluMLP(
1252
+ config, use_sparse_regularization=use_sparse_regularization
1253
+ )
1254
+ new_mlp.gate_proj = original_mlp.gate_proj
1255
+ new_mlp.up_proj = original_mlp.up_proj
1256
+ new_mlp.down_proj = original_mlp.down_proj
1257
+ layer.mlp = new_mlp
1258
+
1259
+ # for layer in model.model.layers:
1260
+ # original_attention = layer.self_attn
1261
+ # new_attention = SparseMistralAttention(
1262
+ # config=original_attention.config, layer_idx=original_attention.layer_idx
1263
+ # )
1264
+ # for attr in vars(original_attention):
1265
+ # setattr(new_attention, attr, getattr(original_attention, attr))
1266
+ # layer.self_attn = new_attention
1267
+
1268
+
1269
+ def apply_mistral_sparse_attention(
1270
+ model,
1271
+ config,
1272
+ ):
1273
+ for layer in model.model.layers:
1274
+ layer.self_attention = layer.self_attention
1275
+
1276
+
1277
+ def apply_mistral_sparse_decoder_layer(
1278
+ model,
1279
+ config,
1280
+ init_svd: bool = True,
1281
+ ):
1282
+ assert isinstance(model.model, MistralModel), "model.model must be a MistralModel."
1283
+ new_layers = []
1284
+ for layer_idx, layer in enumerate(model.model.layers):
1285
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
1286
+ new_layers.append(
1287
+ SparseMistralDecoderLayer(
1288
+ config=config,
1289
+ layer_idx=layer_idx,
1290
+ decoder_layer=layer,
1291
+ init_svd=init_svd,
1292
+ )
1293
+ )
1294
+ print(f"{layer_idx}th mlp layer activation: {layer.mlp.sparse_act_fn}")
1295
+ else:
1296
+ new_layers.append(layer)
1297
+ model.model.layers = nn.ModuleList(new_layers)
1298
+
1299
+
1300
+ def enable_sparse_predictor(
1301
+ model,
1302
+ ):
1303
+ for layer_idx, layer in enumerate(model.model.layers):
1304
+ if isinstance(layer, MistralDecoderLayer):
1305
+ layer.use_sparse_predictor = True
1306
+
1307
+
1308
+ def disable_sparse_predictor(
1309
+ model,
1310
+ ):
1311
+ for layer_idx, layer in enumerate(model.model.layers):
1312
+ if isinstance(layer, MistralDecoderLayer):
1313
+ layer.use_sparse_predictor = False
1314
+
1315
+
1316
+ def activate_stats(model, is_collect_histogram: bool = True):
1317
+ for layer in model.model.layers:
1318
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
1319
+ layer.mlp.activate_stats(is_collect_histogram=is_collect_histogram)
1320
+
1321
+
1322
+ def deactivate_stats(model):
1323
+ for layer in model.model.layers:
1324
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
1325
+ layer.mlp.deactivate_stats()
1326
+
1327
+
1328
+ def enable_sparse_silu(model):
1329
+ print("Enabling SparseSilu")
1330
+ for i, layer in enumerate(model.model.layers):
1331
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
1332
+ layer.mlp.kill_sparse_swish_outputs = True
1333
+
1334
+
1335
+ def print_dead_neuron_stats(model):
1336
+ total_sparsity = 0
1337
+ counts = 0
1338
+ for i, layer in enumerate(model.model.layers):
1339
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
1340
+ dead_percentage = layer.mlp.dead_percentage * 100
1341
+ agg_sparsity = layer.mlp.agg_sparsity * 100
1342
+ print(f"layer {i} sparsity: {dead_percentage:.3f}%")
1343
+ print(f"layer {i} agg sparsity: {agg_sparsity:.3f}%")
1344
+ total_sparsity += dead_percentage
1345
+ counts += 1
1346
+
1347
+ print(f"Total sparsity: {total_sparsity/counts: .3f}%")
1348
+ return total_sparsity / counts
1349
+
1350
+
1351
+ def get_sparse_layers(model: MistralModel):
1352
+ sparse_layers = [
1353
+ m.mlp for m in model.layers() if isinstance(m.mlp, MistralSparseSiluMLP)
1354
+ ]
1355
+ return sparse_layers
1356
+
1357
+
1358
+ def get_threshold(
1359
+ bin_edges: torch.tensor, histogram_counts: torch.tensor, sparsity_level: float
1360
+ ): # Only for L1 Regularization
1361
+ assert (
1362
+ len(bin_edges.shape) == len(histogram_counts.shape) == 1
1363
+ ), "bin_edges and histogram are expected to be 1-dimensional."
1364
+ histogram_counts /= histogram_counts.sum()
1365
+ threshold_idx = torch.searchsorted(
1366
+ histogram_counts.cumsum(0), sparsity_level, side="right"
1367
+ )
1368
+
1369
+ return bin_edges[threshold_idx]
1370
+
1371
+
1372
+ def set_regularization_threshold(model, threshold: float = 0.1):
1373
+ for i, layer in enumerate(model.model.layers):
1374
+ if (
1375
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
1376
+ ): # Can set the threshold only the relevant statistics is collected.
1377
+ layer.mlp.regularization_threshold = threshold # TODO: find better param
1378
+
1379
+
1380
+ def set_sparse_threshold(
1381
+ model, sparsity_level: float, use_relu: bool = False, use_resilu: bool = False
1382
+ ):
1383
+ assert not (use_relu and use_resilu), "It's not allowed to use both relu and resilu"
1384
+ for i, layer in enumerate(model.model.layers):
1385
+ if (
1386
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
1387
+ ): # Can set the threshold only the relevant statistics is collected.
1388
+ if use_relu:
1389
+ layer.mlp.sparse_act_fn = nn.ReLU()
1390
+ layer.mlp.use_relu = True
1391
+ layer.mlp.use_resilu = False
1392
+ elif use_resilu:
1393
+ layer.mlp.sparse_act_fn = nn.Sequential(nn.ReLU(), nn.SiLU())
1394
+ layer.mlp.use_resilu = True
1395
+ layer.mlp.use_relu = False
1396
+ else:
1397
+ layer.mlp.dead_threshold = get_threshold(
1398
+ layer.mlp.histogram_bins,
1399
+ layer.mlp.post_act_hist_counts,
1400
+ sparsity_level,
1401
+ )
1402
+ layer.mlp.sparse_act_fn.set_new_threshold(layer.mlp.dead_threshold)
1403
+ layer.mlp.regularization_threshold = (
1404
+ layer.mlp.dead_threshold * 1.2
1405
+ ) # TODO: find better param
1406
+
1407
+
1408
+ def plot_histogram(
1409
+ bin_edges,
1410
+ histogram_counts: torch.tensor,
1411
+ title: str = "Activation Distribution",
1412
+ fig_dir: str = "figures",
1413
+ ):
1414
+ plt.bar(
1415
+ bin_edges[:-1], histogram_counts, width=np.diff(bin_edges), edgecolor="black"
1416
+ )
1417
+ plt.title(title)
1418
+ plt.xlabel("Activation Value")
1419
+ plt.ylabel("Frequency")
1420
+ os.makedirs(fig_dir, exist_ok=True)
1421
+ plt.savefig(f"{fig_dir}/{title}.png")
1422
+ # plt.show()
1423
+ plt.clf()
1424
+
1425
+
1426
+ def plot_act(model, fig_dir: str = "figures"):
1427
+ for i, layer in enumerate(model.model.layers):
1428
+ if (
1429
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
1430
+ ): # Can set the threshold only the relevant statistics is collected.
1431
+ plot_title = f"Layer: {i} Pre-Activation Distribution"
1432
+ plot_histogram(
1433
+ layer.mlp.histogram_bins, layer.mlp.pre_act_hist_counts, plot_title
1434
+ )
1435
+
1436
+ plot_title = f"Layer: {i} Post-Activation Absolute Distribution"
1437
+ plot_histogram(
1438
+ layer.mlp.histogram_bins, layer.mlp.post_act_hist_counts, plot_title
1439
+ )
1440
+
1441
+
1442
+ def save_act_hist(
1443
+ model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
1444
+ ):
1445
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
1446
+ act_dict = {}
1447
+ for i, layer in enumerate(model.model.layers):
1448
+ if (
1449
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
1450
+ ): # Can set the threshold only the relevant statistics is collected.
1451
+ act_dict[i] = (
1452
+ layer.mlp.histogram_bins,
1453
+ # layer.mlp.pre_mlp_hist_counts,
1454
+ layer.mlp.pre_act_hist_counts,
1455
+ layer.mlp.post_act_hist_counts,
1456
+ )
1457
+ print("Saving activation histograms...\n\n\n")
1458
+ torch.save(act_dict, filename)
1459
+
1460
+
1461
+ def load_act_hist(
1462
+ model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
1463
+ ):
1464
+ assert os.path.exists(
1465
+ filename
1466
+ ), f"{filename} does not exist when loading pre/post-activation histogram of SparseMistralSiluMLP."
1467
+ print("Loading activation histograms...\n\n\n")
1468
+
1469
+ act_dict = torch.load(filename)
1470
+ for i, layer in enumerate(model.model.layers):
1471
+ if (
1472
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
1473
+ ): # Can set the threshold only the relevant statistics is collected.
1474
+ (
1475
+ layer.mlp.histogram_bins,
1476
+ # layer.mlp.pre_mlp_hist_counts,
1477
+ layer.mlp.pre_act_hist_counts,
1478
+ layer.mlp.post_act_hist_counts,
1479
+ ) = act_dict[i]
1480
+
1481
+
1482
+ def enable_last_k_modules(model, start_module_idx: int):
1483
+ assert 32 > start_module_idx >= 0
1484
+ new_modules = []
1485
+ new_idx = 0
1486
+ for idx in range(start_module_idx, len(model.model.original_layers)):
1487
+ module = model.model.original_layers[idx]
1488
+ module.layer_idx = new_idx
1489
+ module.self_attn.layer_idx = new_idx
1490
+ new_modules.append(module)
1491
+ new_idx += 1
1492
+ print(module.layer_idx)
1493
+
1494
+ model.model.layers = nn.ModuleList(new_modules)
1495
+
1496
+
1497
+ def enable_first_k_modules(model, end_module_idx: int):
1498
+ assert 32 > end_module_idx >= 0
1499
+ new_modules = []
1500
+ new_idx = 0
1501
+ for idx in range(0, end_module_idx + 1):
1502
+ module = model.model.original_layers[idx]
1503
+ module.layer_idx = new_idx
1504
+ module.self_attn.layer_idx = new_idx
1505
+ new_modules.append(module)
1506
+ new_idx += 1
1507
+ print(module.layer_idx)
1508
+
1509
+ model.model.layers = nn.ModuleList(new_modules)