vxbrandon commited on
Commit
77f5e90
1 Parent(s): 6baf907

End of training

Browse files
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Mistral_Sparse_refined_web_70p_2024-03-12
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Mistral_Sparse_refined_web_70p_2024-03-12
15
+
16
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 2.3368
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 1e-05
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 0
41
+ - distributed_type: multi-GPU
42
+ - num_devices: 4
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 16
45
+ - total_eval_batch_size: 4
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - training_steps: 100
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:-----:|:----:|:---------------:|
54
+ | 2.7221 | 0.0 | 25 | 2.8218 |
55
+ | 2.4266 | 0.01 | 50 | 2.6972 |
56
+ | 2.4153 | 0.01 | 75 | 2.6181 |
57
+ | 2.3588 | 0.02 | 100 | 2.5695 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.36.2
63
+ - Pytorch 2.1.2+cu121
64
+ - Datasets 2.15.0
65
+ - Tokenizers 0.15.0
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "SparseMistralforCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "sparsification_sftt.SparseMistralConfig",
9
+ "AutoModelForCausalLM": "sparsification_sftt.SparseMistralforCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 14336,
17
+ "max_position_embeddings": 32768,
18
+ "model_type": "sparse_mistral",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 8,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_theta": 10000.0,
24
+ "sliding_window": 4096,
25
+ "thresholds": [
26
+ 0.027081236243247986,
27
+ 0.037111327052116394,
28
+ 0.07923770695924759,
29
+ 0.07923770695924759,
30
+ 0.09327983111143112,
31
+ 0.10732196271419525,
32
+ 0.11133399605751038,
33
+ 0.11735205352306366,
34
+ 0.12136408686637878,
35
+ 0.12136408686637878,
36
+ 0.13340020179748535,
37
+ 0.13540621101856232,
38
+ 0.14543630182743073,
39
+ 0.14744232594966888,
40
+ 0.15546639263629913,
41
+ 0.1735205501317978,
42
+ 0.19558675587177277,
43
+ 0.21765294671058655,
44
+ 0.22968906164169312,
45
+ 0.24373118579387665,
46
+ 0.24774321913719177,
47
+ 0.2577733099460602,
48
+ 0.2577733099460602,
49
+ 0.26379138231277466,
50
+ 0.26379138231277466,
51
+ 0.26379138231277466,
52
+ 0.26379138231277466,
53
+ 0.26579737663269043,
54
+ 0.26579737663269043,
55
+ 0.26980942487716675,
56
+ 0.2838515639305115,
57
+ 0.5145436525344849
58
+ ],
59
+ "tie_word_embeddings": false,
60
+ "torch_dtype": "bfloat16",
61
+ "transformers_version": "4.36.2",
62
+ "use_cache": false,
63
+ "use_relu": false,
64
+ "use_sparse_model": true,
65
+ "use_sparse_predictor": false,
66
+ "use_sparse_regularization": false,
67
+ "vocab_size": 32000
68
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.36.2"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f0f22e9e6c5f6acd5a18ff000edabdf06ac777522766864be8600fb5bf68eff
3
+ size 4943162336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2952b22a208103229f44efac988c468cc301096c2978837887126984ec8ffe12
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c647d165d44414df828534cd73af88778bcea79c12212f9be5f6caecfdba76fe
3
+ size 4540516344
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
sparsification_sftt.py ADDED
@@ -0,0 +1,974 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import TrainerCallback, Trainer
2
+ from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
3
+ from peft import PeftModel
4
+ from datasets import Dataset
5
+ from transformers.utils import is_sagemaker_mp_enabled, is_sagemaker_dp_enabled
6
+ from typing import Any, Dict, Union, Optional, Tuple
7
+ from torch.nn import MSELoss
8
+
9
+ import warnings
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import matplotlib.pyplot as plt
14
+ import numpy as np
15
+ import time
16
+ import os
17
+ import copy
18
+
19
+ from transformers.models.mistral.modeling_mistral import (
20
+ MistralMLP,
21
+ MistralAttention,
22
+ MistralModel,
23
+ MistralDecoderLayer,
24
+ MistralConfig,
25
+ MISTRAL_ATTENTION_CLASSES,
26
+ MistralRMSNorm,
27
+ MistralForCausalLM,
28
+ )
29
+ from experiments.models.sparse_mistral.svd_router import (
30
+ low_rank_approximation,
31
+ SparsePredictor,
32
+ )
33
+ from utils.utils import (
34
+ print_size_of_model,
35
+ is_running_deepspeed,
36
+ is_mainprocess,
37
+ get_datetime,
38
+ ds_print,
39
+ )
40
+
41
+
42
+ class SparseSFTTTrainer(SFTTrainer):
43
+ def __init__(self, *args, **kwargs):
44
+ self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
45
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
46
+ self.use_spm_loss = False
47
+ self.freeze_original_weights = False
48
+ self.regularization_type = kwargs.pop(
49
+ "regularization_type", "L1 positive activation"
50
+ )
51
+ assert self.regularization_type in [
52
+ "L2 activation",
53
+ "L1 positive activation",
54
+ ], f"Invalid regularization type: {self.regularization_type}"
55
+ self.sparse_layers = []
56
+ self.sparse_decoder_layers = []
57
+ super(SparseSFTTTrainer, self).__init__(*args, **kwargs)
58
+
59
+ def initialize_sparse_silu_layers(self, model):
60
+ self.sparse_layers = [
61
+ m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
62
+ ]
63
+
64
+ def initialize_sparse_decoder_layers(self, model):
65
+ self.sparse_decoder_layers = [
66
+ m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
67
+ ]
68
+
69
+ def training_step(
70
+ self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
71
+ ) -> torch.Tensor:
72
+ """
73
+ Override the huggingface's training_step function to add a regularization term.
74
+ A regularization term is computed with intermediate values, which are freed after "backward()."
75
+ You need to set `retain_graph=True` inside `backward` function to keep the values.
76
+ """
77
+ model.train()
78
+ inputs = self._prepare_inputs(inputs)
79
+
80
+ with self.compute_loss_context_manager():
81
+ loss = self.compute_loss(model, inputs)
82
+
83
+ if self.args.n_gpu > 1:
84
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
85
+ if not self.freeze_original_weights:
86
+ if loss is not None:
87
+ self.accelerator.backward(loss, retain_graph=False)
88
+
89
+ if self.use_sparse_regularization:
90
+ regularization_loss = self.compute_regularization(model)
91
+ if self.args.n_gpu > 1:
92
+ regularization_loss = regularization_loss.mean()
93
+ if regularization_loss is not None:
94
+ self.accelerator.backward(regularization_loss, retain_graph=True)
95
+ loss += regularization_loss
96
+
97
+ if self.use_spm_loss:
98
+ spm_loss = self.compute_spm_loss(model)
99
+ if self.args.n_gpu > 1:
100
+ spm_loss = spm_loss.mean()
101
+ if spm_loss is not None:
102
+ self.accelerator.backward(spm_loss, retain_graph=False)
103
+ loss += spm_loss
104
+
105
+ return loss.detach() / self.args.gradient_accumulation_steps
106
+
107
+ def compute_regularization(self, model):
108
+ """
109
+ Compute a sparse regularization loss for SiLU
110
+ """
111
+ loss = 0
112
+ if len(self.sparse_layers) == 0:
113
+ self.initialize_sparse_silu_layers(model)
114
+ num_layers = len(self.sparse_layers)
115
+
116
+ for module in self.sparse_layers:
117
+ if module.activation_norm is not None:
118
+ loss += module.activation_norm
119
+
120
+ loss /= num_layers
121
+ loss *= self.regularization_coefficient
122
+
123
+ if self.state.global_step % 20 == 0 and loss != 0:
124
+ print("Negative relularizer loss: ", loss.item())
125
+ return loss
126
+
127
+ def compute_spm_loss(self, model):
128
+ loss = 0
129
+ if len(self.sparse_decoder_layers) == 0:
130
+ self.initialize_sparse_decoder_layers(model)
131
+ for module in self.sparse_decoder_layers:
132
+ if module.distill_loss != None:
133
+ loss += module.distill_loss
134
+ if self.state.global_step % 20 == 0 and loss != 0:
135
+ print("Sparse Predictor Distillation loss: ", loss.item())
136
+ return loss
137
+
138
+ # def compute_loss(self, model, inputs, return_outputs=False):
139
+ # loss = super().compute_loss(model, inputs, return_outputs)
140
+ #
141
+ # if is_sagemaker_mp_enabled():
142
+ # import smdistributed.modelparallel.torch as smp
143
+ # @smp.step()
144
+ # def smp_forward_backward(model, inputs, gradient_accumulation_steps=1):
145
+ # outputs = model(**inputs)
146
+ # loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
147
+ # loss /= gradient_accumulation_steps
148
+ # model.backward(loss)
149
+ # return loss
150
+ #
151
+ # loss_mb = smp_forward_backward(
152
+ # model, inputs, self.args.gradient_accumulation_steps
153
+ # )
154
+ # if self.use_sparse_regularization:
155
+ # return loss_mb.reduce_mean().detach().to(
156
+ # self.args.device
157
+ # ) + self.regularization_coefficient * self.compute_regularization(model)
158
+ # else:
159
+ # return loss_mb.reduce_mean().detach().to(self)
160
+ #
161
+ # if return_outputs:
162
+ # classification_loss, outputs = loss
163
+ # else:
164
+ # classification_loss = loss
165
+ #
166
+ # loss = classification_loss
167
+ # if self.use_sparse_regularization:
168
+ # regularization_loss = self.compute_regularization(model)
169
+ # loss += self.regularization_coefficient * regularization_loss
170
+ #
171
+ # return (loss, outputs) if return_outputs else loss
172
+
173
+
174
+ class SparseTrainer(Trainer):
175
+ def __init__(self, *args, **kwargs):
176
+ self.regularization_coefficient = kwargs.pop("regularization_coefficient", 10)
177
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", False)
178
+ self.use_spm_loss = False
179
+ self.freeze_original_weights = False
180
+ self.regularization_type = kwargs.pop(
181
+ "regularization_type", "L1 positive activation"
182
+ )
183
+ assert self.regularization_type in [
184
+ "L2 activation",
185
+ "L1 positive activation",
186
+ ], f"Invalid regularization type: {self.regularization_type}"
187
+ self.sparse_layers = []
188
+ self.sparse_decoder_layers = []
189
+ super(SparseTrainer, self).__init__(*args, **kwargs)
190
+
191
+ def initialize_sparse_silu_layers(self, model):
192
+ self.sparse_layers = [
193
+ m for m in model.modules() if isinstance(m, MistralSparseSiluMLP)
194
+ ]
195
+
196
+ def initialize_sparse_decoder_layers(self, model):
197
+ self.sparse_decoder_layers = [
198
+ m for m in model.modules() if isinstance(m, SparseMistralDecoderLayer)
199
+ ]
200
+
201
+ def training_step(
202
+ self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
203
+ ) -> torch.Tensor:
204
+ """
205
+ Override the huggingface's training_step function to add a regularization term.
206
+ A regularization term is computed with intermediate values, which are freed after "backward()."
207
+ You need to set `retain_graph=True` inside `backward` function to keep the values.
208
+ """
209
+ model.train()
210
+ inputs = self._prepare_inputs(inputs)
211
+
212
+ with self.compute_loss_context_manager():
213
+ loss = self.compute_loss(model, inputs)
214
+
215
+ if self.args.n_gpu > 1:
216
+ loss = loss.mean() # mean() to average on multi-gpu parallel training
217
+ if not self.freeze_original_weights:
218
+ if loss is not None:
219
+ self.accelerator.backward(loss, retain_graph=False)
220
+
221
+ if self.use_sparse_regularization:
222
+ regularization_loss = self.compute_regularization(model)
223
+ if self.args.n_gpu > 1:
224
+ regularization_loss = regularization_loss.mean()
225
+ if regularization_loss is not None:
226
+ self.accelerator.backward(regularization_loss, retain_graph=True)
227
+ loss += regularization_loss
228
+
229
+ if self.use_spm_loss:
230
+ spm_loss = self.compute_spm_loss(model)
231
+ if self.args.n_gpu > 1:
232
+ spm_loss = spm_loss.mean()
233
+ if spm_loss is not None:
234
+ self.accelerator.backward(spm_loss, retain_graph=False)
235
+ loss += spm_loss
236
+
237
+ return loss.detach() / self.args.gradient_accumulation_steps
238
+
239
+ def compute_regularization(self, model):
240
+ """
241
+ Compute a sparse regularization loss for SiLU
242
+ """
243
+ loss = 0
244
+ if len(self.sparse_layers) == 0:
245
+ self.initialize_sparse_silu_layers(model)
246
+ num_layers = len(self.sparse_layers)
247
+
248
+ for module in self.sparse_layers:
249
+ if module.activation_norm is not None:
250
+ loss += module.activation_norm
251
+
252
+ loss /= num_layers
253
+ loss *= self.regularization_coefficient
254
+
255
+ if self.state.global_step % 20 == 0 and loss != 0:
256
+ print("Negative relularizer loss: ", loss.item())
257
+ return loss
258
+
259
+ def compute_spm_loss(self, model):
260
+ loss = 0
261
+ if len(self.sparse_decoder_layers) == 0:
262
+ self.initialize_sparse_decoder_layers(model)
263
+ for module in self.sparse_decoder_layers:
264
+ if module.distill_loss != None:
265
+ loss += module.distill_loss
266
+ if self.state.global_step % 20 == 0 and loss != 0:
267
+ print("Sparse Predictor Distillation loss: ", loss.item())
268
+ return loss
269
+
270
+
271
+ class SparseSiLU(nn.SiLU):
272
+ def __init__(self, threshold):
273
+ super(SparseSiLU, self).__init__()
274
+ self.threshold = threshold
275
+ self.m = nn.Threshold(self.threshold, 0)
276
+
277
+ def set_new_threshold(self, threshold):
278
+ self.threshold = threshold
279
+ self.m = nn.Threshold(threshold, 0)
280
+
281
+ def forward(self, x):
282
+ act = super(SparseSiLU, self).forward(x)
283
+ return self.m(act) - self.m(-act)
284
+
285
+
286
+ class MistralSparseSiluMLP(MistralMLP):
287
+ def __init__(self, config, *args, **kwargs):
288
+ super().__init__(config)
289
+ self.swish_outputs = None
290
+ self.relu = nn.ReLU()
291
+
292
+ self.kill_sparse_swish_outputs = False
293
+ self.dead_percentage = 0
294
+ self.is_stats = False
295
+ self.visit_counts = 0
296
+
297
+ # Hyperparameters to tune
298
+ self.dead_threshold = kwargs.pop("dead_threshold", 0)
299
+ self.use_sparse_regularization = kwargs.pop("use_sparse_regularization", True)
300
+ self.regularization_type = kwargs.pop(
301
+ "regularization_type", "L1 regularization"
302
+ )
303
+ self.regularization_threshold = kwargs.pop("regularization_threshold", 0.5)
304
+ self.use_relu = kwargs.pop("use_relu", False)
305
+ self.activation_norm = None
306
+
307
+ # Activation Histograms
308
+ self.is_collect_histogram = False
309
+ num_bins = 1000
310
+ self.histogram_bins = torch.linspace(-1, 1, num_bins - 2)
311
+ self.histogram_bins = torch.cat(
312
+ [torch.tensor([-torch.inf]), self.histogram_bins, torch.tensor([torch.inf])]
313
+ )
314
+ self.pre_act_hist_counts = torch.zeros(num_bins - 1)
315
+ self.post_act_hist_counts = torch.zeros(num_bins - 1)
316
+ self.t = 0
317
+ self.count = 0
318
+ self.agg_sparsity = 0
319
+
320
+ # Sparse activation function
321
+ self.sparse_act_fn = SparseSiLU(threshold=self.dead_threshold)
322
+
323
+ def activate_stats(self, is_collect_histogram: bool = True):
324
+ self.is_stats = True
325
+ self.dead_percentage = 0
326
+ self.visit_counts = 0
327
+ self.is_collect_histogram = is_collect_histogram
328
+ self.histogram_counts = torch.zeros(2000) # .to(self.down_proj.weight.device)
329
+
330
+ def deactivate_stats(self):
331
+ self.is_stats = False
332
+
333
+ def collect_stats(self, pre_activation, post_activation):
334
+ start_time = time.time()
335
+ pre_activation = pre_activation.float().cpu().detach()
336
+ post_activation = post_activation.float().cpu().detach()
337
+ # self.histogram_bins=self.histogram_bins.to(pre_activation.device).type(pre_activation.dtype)
338
+ self.pre_act_hist_counts += torch.histogram(
339
+ pre_activation, bins=self.histogram_bins
340
+ )[0]
341
+ self.post_act_hist_counts += torch.histogram(
342
+ torch.abs(post_activation), bins=self.histogram_bins
343
+ )[0]
344
+ self.t += time.time() - start_time
345
+ if self.visit_counts % 30 == 0:
346
+ print(f"Time taken to collect stats: {self.t}s.")
347
+
348
+ def forward(
349
+ self,
350
+ x,
351
+ sp_mask: torch.tensor = None,
352
+ ):
353
+ """
354
+ If kill_sparse_swish_outputs is set to False, this layer functions exactly like a normal MLP layer.
355
+ """
356
+ if sp_mask != None: # When sparse mask is given
357
+ return self.down_proj(
358
+ self.sparse_act_fn(self.gate_proj(x) * sp_mask) * self.up_proj(x)
359
+ ) # Todo: This doesn't accelerate runtime (instead slowing down)
360
+
361
+ elif self.use_relu:
362
+ post_act = self.relu(self.gate_proj(x))
363
+ self.count += 1
364
+ if self.count <= 1:
365
+ print("USING RELU!!!!")
366
+
367
+ if self.is_stats:
368
+ dead_neurons = post_act == 0
369
+ dead_percentage = dead_neurons.float().mean()
370
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
371
+
372
+ self.dead_percentage = (
373
+ self.dead_percentage * self.visit_counts + dead_percentage
374
+ ) / (self.visit_counts + 1)
375
+ self.agg_sparsity = (
376
+ self.agg_sparsity * self.visit_counts + agg_sparsity
377
+ ) / (self.visit_counts + 1)
378
+ self.visit_counts += 1
379
+
380
+ return self.down_proj(post_act * self.up_proj(x))
381
+
382
+ else:
383
+ self.count += 1
384
+ if self.count <= 1:
385
+ print("USING SparseSILU!!!!")
386
+ pre_act = self.gate_proj(x)
387
+ post_act = self.act_fn(pre_act)
388
+ if self.kill_sparse_swish_outputs:
389
+ dead_neurons = post_act.abs() <= self.dead_threshold
390
+ # print("pre act sparsity: ", (pre_act==0).float().mean())
391
+
392
+ dead_percentage = dead_neurons.float().mean()
393
+ agg_sparsity = dead_neurons.all(dim=0).float().mean()
394
+
395
+ if self.is_stats:
396
+ self.dead_percentage = (
397
+ self.dead_percentage * self.visit_counts + dead_percentage
398
+ ) / (self.visit_counts + 1)
399
+ self.agg_sparsity = (
400
+ self.agg_sparsity * self.visit_counts + agg_sparsity
401
+ ) / (self.visit_counts + 1)
402
+ self.visit_counts += 1
403
+
404
+ self.a = dead_percentage
405
+
406
+ # print(self.agg_sparsity)
407
+
408
+ # Collect histogram stats
409
+ if (
410
+ self.is_collect_histogram
411
+ and pre_act.eq(0).float().mean() < 0.99
412
+ ): # Padded dataset
413
+ self.collect_stats(pre_act, post_act)
414
+
415
+ post_act[dead_neurons] = 0
416
+
417
+ out = self.down_proj(post_act * self.up_proj(x))
418
+ if self.use_sparse_regularization:
419
+ if self.regularization_type == "L1 regularization":
420
+ self.activation_norm = torch.abs(post_act)[
421
+ post_act < self.regularization_threshold
422
+ ].mean()
423
+ elif self.regularization_type == "L2 regularization":
424
+ self.activation_norm = torch.sqrt(
425
+ torch.square(post_act)[post_act < self.regularization_threshold]
426
+ ).mean()
427
+
428
+ return out
429
+
430
+
431
+ class SparseMistralDecoderLayer(MistralDecoderLayer):
432
+ def __init__(
433
+ self,
434
+ config: MistralConfig,
435
+ layer_idx: int,
436
+ decoder_layer: MistralDecoderLayer,
437
+ init_svd: bool = True,
438
+ *args,
439
+ **kwargs,
440
+ ):
441
+ assert isinstance(
442
+ decoder_layer.mlp, MistralSparseSiluMLP
443
+ ), f"{type(decoder_layer.mlp)} should MistralSparseSiluMLP."
444
+
445
+ super().__init__(config, layer_idx)
446
+ self.hidden_size = config.hidden_size
447
+ self.intermediate_size = config.intermediate_size
448
+
449
+ self.init_svd = init_svd
450
+ self.self_attn = decoder_layer.self_attn
451
+
452
+ self.mlp = decoder_layer.mlp
453
+ self.input_layernorm = decoder_layer.input_layernorm
454
+ self.post_attention_layernorm = decoder_layer.post_attention_layernorm
455
+
456
+ # Sparse predictor for mlp (initialized with SVD decomposed matrix)
457
+ self.low_rank = kwargs.pop("low_rank", 64)
458
+ self.sparse_act_func = decoder_layer.mlp.sparse_act_fn
459
+
460
+ print(
461
+ f"Setting {layer_idx}th mlp layer's sparse predictor... svd init: {init_svd}"
462
+ )
463
+ self.sp_mlp = low_rank_approximation(
464
+ decoder_layer.mlp.gate_proj,
465
+ act_func=self.sparse_act_func,
466
+ init_svd=init_svd,
467
+ )
468
+ self.use_async = kwargs.pop("use_async", False)
469
+ self.use_sparse_predictor = False
470
+ self.distill_loss = None
471
+
472
+ def forward(
473
+ self,
474
+ hidden_states: torch.Tensor,
475
+ attention_mask: Optional[torch.Tensor] = None,
476
+ position_ids: Optional[torch.LongTensor] = None,
477
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
478
+ output_attentions: Optional[bool] = False,
479
+ use_cache: Optional[bool] = False,
480
+ **kwargs,
481
+ ) -> Tuple[
482
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
483
+ ]:
484
+ print("hidden_states shape: ", hidden_states.shape)
485
+ if "padding_mask" in kwargs:
486
+ warnings.warn(
487
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
488
+ )
489
+
490
+ residual = hidden_states
491
+ sp_mask = None
492
+
493
+ if self.use_async:
494
+ sp_mask = self.sp_mlp(hidden_states)
495
+
496
+ hidden_states = self.input_layernorm(hidden_states)
497
+
498
+ # Self Attention
499
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
500
+ hidden_states=hidden_states,
501
+ attention_mask=attention_mask,
502
+ position_ids=position_ids,
503
+ past_key_value=past_key_value,
504
+ output_attentions=output_attentions,
505
+ use_cache=use_cache,
506
+ )
507
+ hidden_states = residual + hidden_states
508
+
509
+ # Fully Connected
510
+ residual = hidden_states
511
+ hidden_states = self.post_attention_layernorm(hidden_states)
512
+
513
+ if not self.use_async:
514
+ sp_mask = self.sp_mlp(hidden_states)
515
+
516
+ # Compute distillation loss
517
+ gating_output = self.mlp.sparse_act_fn(self.mlp.gate_proj(hidden_states))
518
+ loss_func = MSELoss()
519
+ self.distill_loss = loss_func(sp_mask, gating_output)
520
+
521
+ # Convert sp mask into binary form
522
+ sp_mask = sp_mask > 0
523
+
524
+ if self.training:
525
+ sp_mask = None
526
+ # if not self.use_sparse_predictor:
527
+ # sp_mask = None
528
+
529
+ hidden_states = self.mlp(hidden_states, sp_mask)
530
+ hidden_states = residual + hidden_states
531
+
532
+ outputs = (hidden_states,)
533
+
534
+ if output_attentions:
535
+ outputs += (self_attn_weights,)
536
+
537
+ if use_cache:
538
+ outputs += (present_key_value,)
539
+
540
+ return outputs
541
+
542
+
543
+ class SparseMistralConfig(MistralConfig):
544
+ model_type = "sparse_mistral"
545
+
546
+ def __init__(self, **kwargs):
547
+ super().__init__(**kwargs)
548
+
549
+
550
+ class SparseMistralforCausalLM(MistralForCausalLM):
551
+ config_class = SparseMistralConfig
552
+
553
+ def __init__(self, config):
554
+ super().__init__(config)
555
+ self.config = config
556
+ if config.use_sparse_model:
557
+ self.apply_sparse_mlp()
558
+ if config.thresholds is not None:
559
+ for idx, m in enumerate(self.model.layers):
560
+ if isinstance(m.mlp, MistralSparseSiluMLP):
561
+ m.mlp.dead_threshold = config.thresholds[idx]
562
+ m.mlp.sparse_act_fn.set_new_threshold(m.mlp.dead_threshold)
563
+ m.mlp.kill_sparse_swish_outputs = True
564
+ m.mlp.use_relu = config.use_relu
565
+ if config.use_sparse_predictor:
566
+ self.apply_sparse_predictor(init_svd=config.init_svd)
567
+
568
+ def apply_sparse_mlp(self):
569
+ apply_mistral_sparse_silu_mlp(
570
+ self,
571
+ config=self.config,
572
+ use_sparse_regularization=self.config.use_sparse_regularization,
573
+ )
574
+
575
+ def apply_sparse_predictor(self, init_svd: bool = True):
576
+ apply_mistral_sparse_decoder_layer(self, config=self.config, init_svd=init_svd)
577
+
578
+
579
+ class GracefulRegularizationScheduler(TrainerCallback):
580
+ def __init__(
581
+ self,
582
+ num_warmup_steps=40,
583
+ is_enabled: bool = False,
584
+ model_name: str = "mistral",
585
+ test_dataset: Dataset = None,
586
+ targeted_sparsity: float = 0.5,
587
+ keep_regularization_with_kill: bool = False,
588
+ ):
589
+ """Scheduler for regularizing the model first before applying the dead threshold.
590
+
591
+ :param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
592
+ :param increment_ratio: by how much to increase the dead threshold.
593
+ For example, 0.5 means "increase the threshold by 0.5 * desired threshold
594
+ """
595
+ self.num_warmup_steps = num_warmup_steps
596
+ self.is_enabled = is_enabled
597
+ self.model_name = model_name
598
+ self.test_dataset = test_dataset
599
+ self.targeted_sparsity = targeted_sparsity
600
+ self.keep_regularization_with_kill = keep_regularization_with_kill
601
+ self.act_hist_path = (
602
+ f"/matx/u/vxbrando/histograms/warm_up_reg_{targeted_sparsity}/act_hist.pt"
603
+ )
604
+ if self.is_enabled:
605
+ print("GracefulRegularizationScheduler is enabled.")
606
+ self.trainer = None
607
+
608
+ def set_trainer(self, trainer):
609
+ self.trainer = trainer
610
+
611
+ def on_step_end(self, args, state, control, **kwargs):
612
+ if not self.is_enabled:
613
+ return
614
+
615
+ model = kwargs["model"]
616
+ if isinstance(model, PeftModel):
617
+ base_model = model.get_base_model()
618
+ else:
619
+ base_model = model
620
+
621
+ if state.global_step == 1:
622
+ ds_print("Setting an initial reg threshold to 0.1")
623
+ set_regularization_threshold(base_model, 0.1)
624
+
625
+ # if state.global_step >= self.num_warmup_steps and state.global_step % 50 == 0:
626
+ if state.global_step == self.num_warmup_steps:
627
+ activate_stats(base_model)
628
+ enable_sparse_silu(base_model)
629
+ self.trainer.evaluate()
630
+ save_act_hist(base_model, self.act_hist_path)
631
+ set_sparse_threshold(base_model, self.targeted_sparsity, True)
632
+ deactivate_stats(base_model)
633
+ self.trainer.use_sparse_regularization = self.keep_regularization_with_kill
634
+ # set_layer_specific_regularization(model.get_base_model())
635
+ print_dead_neuron_stats(model.get_base_model())
636
+
637
+ if state.global_step % 2000 == 0:
638
+ if is_mainprocess():
639
+ ds_print(
640
+ f"Saving to /scr/lukeai/{self.model_name}_{state.global_step}.pt",
641
+ )
642
+ torch.save(
643
+ model.state_dict(),
644
+ f"/scr/lukeai/{self.model_name}_{state.global_step}.pt",
645
+ )
646
+
647
+
648
+ class GradualSparsificationScheduler(TrainerCallback):
649
+ def __init__(
650
+ self,
651
+ num_warmup_steps=40,
652
+ increment_ratio=0.5,
653
+ is_enabled: bool = False,
654
+ model_name: str = "mistral",
655
+ ):
656
+ """Scheduler for gradually increasing a dead threshold until it reaches the desired threshold.
657
+
658
+ :param num_warmup_steps: number of training steps required to reach the dead threshold, defaults to 40
659
+ :param increment_ratio: by how much to increase the dead threshold.
660
+ For example, 0.5 means "increase the threshold by 0.5 * desired threshold
661
+ """
662
+ self.num_warmup_steps = num_warmup_steps
663
+ self.increment_ratio = increment_ratio
664
+ self.step_size = int(num_warmup_steps * increment_ratio)
665
+ self.is_enabled = is_enabled
666
+ self.model_name = model_name
667
+
668
+ def on_step_end(self, args, state, control, **kwargs):
669
+ model = kwargs["model"]
670
+
671
+ if not self.is_enabled:
672
+ if state.global_step <= 10:
673
+ for module in model.modules():
674
+ if isinstance(module, MistralSparseSiluMLP):
675
+ module.current_dead_threshold = module.dead_threshold
676
+ return
677
+
678
+ current_dead_threshold = 0
679
+ desired_dead_threshold = 0
680
+
681
+ if is_mainprocess():
682
+ ds_print(state.global_step)
683
+
684
+ if state.global_step % self.step_size == 2:
685
+ for module in model.modules():
686
+ if isinstance(module, MistralSparseSiluMLP):
687
+ desired_dead_threshold = copy.deepcopy(module.dead_threshold)
688
+ current_dead_threshold = module.current_dead_threshold
689
+ current_dead_threshold += (
690
+ self.increment_ratio * desired_dead_threshold
691
+ )
692
+ module.current_dead_threshold = min(
693
+ desired_dead_threshold, current_dead_threshold
694
+ )
695
+
696
+ if is_running_deepspeed and is_mainprocess():
697
+ ds_print(
698
+ state.global_step,
699
+ current_dead_threshold,
700
+ desired_dead_threshold,
701
+ )
702
+
703
+ if state.global_step % 2000 == 0:
704
+ if is_running_deepspeed and is_mainprocess():
705
+ ds_print(
706
+ f"Saving to /matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
707
+ )
708
+ torch.save(
709
+ model.state_dict(),
710
+ f"/matx/u/lukeai/{self.model_name}_{state.global_step - 2}.pt",
711
+ )
712
+
713
+
714
+ def get_sparse_mistral_config(
715
+ config: MistralConfig,
716
+ use_sparse_model=False,
717
+ use_sparse_predictor=False,
718
+ use_sparse_regularization=False,
719
+ thresholds=None,
720
+ ):
721
+ new_config = SparseMistralConfig()
722
+ new_config.__dict__.update(config.__dict__)
723
+ config = new_config
724
+ config.use_sparse_model = use_sparse_model
725
+ config.use_sparse_predictor = use_sparse_predictor
726
+ config.use_sparse_regularization = use_sparse_regularization
727
+ config.thresholds = thresholds
728
+
729
+ return config
730
+
731
+
732
+ def apply_mistral_sparse_silu_mlp(
733
+ model,
734
+ config,
735
+ use_sparse_regularization: bool = False,
736
+ ):
737
+ # counts = 0
738
+ for layer in model.model.layers:
739
+ # counts += 1
740
+ # if counts < 4:
741
+ # continue
742
+ original_mlp = layer.mlp
743
+ new_mlp = MistralSparseSiluMLP(
744
+ config, use_sparse_regularization=use_sparse_regularization
745
+ )
746
+ new_mlp.gate_proj = original_mlp.gate_proj
747
+ new_mlp.up_proj = original_mlp.up_proj
748
+ new_mlp.down_proj = original_mlp.down_proj
749
+ layer.mlp = new_mlp
750
+
751
+
752
+ def apply_mistral_sparse_decoder_layer(
753
+ model,
754
+ config,
755
+ init_svd: bool = True,
756
+ ):
757
+ assert isinstance(model.model, MistralModel), "model.model must be a MistralModel."
758
+ new_layers = []
759
+ for layer_idx, layer in enumerate(model.model.layers):
760
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
761
+ new_layers.append(
762
+ SparseMistralDecoderLayer(
763
+ config=config,
764
+ layer_idx=layer_idx,
765
+ decoder_layer=layer,
766
+ init_svd=init_svd,
767
+ )
768
+ )
769
+ print(f"{layer_idx}th mlp layer activation: {layer.mlp.sparse_act_fn}")
770
+ else:
771
+ new_layers.append(layer)
772
+ model.model.layers = nn.ModuleList(new_layers)
773
+
774
+
775
+ def enable_sparse_predictor(
776
+ model,
777
+ ):
778
+ for layer_idx, layer in enumerate(model.model.layers):
779
+ if isinstance(layer, MistralDecoderLayer):
780
+ layer.use_sparse_predictor = True
781
+
782
+
783
+ def disable_sparse_predictor(
784
+ model,
785
+ ):
786
+ for layer_idx, layer in enumerate(model.model.layers):
787
+ if isinstance(layer, MistralDecoderLayer):
788
+ layer.use_sparse_predictor = False
789
+
790
+
791
+ def activate_stats(model, is_collect_histogram: bool = True):
792
+ for layer in model.model.layers:
793
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
794
+ layer.mlp.activate_stats(is_collect_histogram=is_collect_histogram)
795
+
796
+
797
+ def deactivate_stats(model):
798
+ for layer in model.model.layers:
799
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
800
+ layer.mlp.deactivate_stats()
801
+
802
+
803
+ def enable_sparse_silu(model):
804
+ print("Enabling SparseSilu")
805
+ for i, layer in enumerate(model.model.layers):
806
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
807
+ layer.mlp.kill_sparse_swish_outputs = True
808
+
809
+
810
+ def print_dead_neuron_stats(model):
811
+ total_sparsity = 0
812
+ counts = 0
813
+ for i, layer in enumerate(model.model.layers):
814
+ if isinstance(layer.mlp, MistralSparseSiluMLP):
815
+ dead_percentage = layer.mlp.dead_percentage * 100
816
+ agg_sparsity = layer.mlp.agg_sparsity * 100
817
+ print(f"layer {i} sparsity: {dead_percentage:.3f}%")
818
+ print(f"layer {i} agg sparsity: {agg_sparsity:.3f}%")
819
+ total_sparsity += dead_percentage
820
+ counts += 1
821
+
822
+ print(f"Total sparsity: {total_sparsity/counts: .3f}%")
823
+ return total_sparsity / counts
824
+
825
+
826
+ def get_sparse_layers(model: MistralModel):
827
+ sparse_layers = [
828
+ m.mlp for m in model.layers() if isinstance(m.mlp, MistralSparseSiluMLP)
829
+ ]
830
+ return sparse_layers
831
+
832
+
833
+ def get_threshold(
834
+ bin_edges: torch.tensor, histogram_counts: torch.tensor, sparsity_level: float
835
+ ): # Only for L1 Regularization
836
+ assert (
837
+ len(bin_edges.shape) == len(histogram_counts.shape) == 1
838
+ ), "bin_edges and histogram are expected to be 1-dimensional."
839
+ histogram_counts /= histogram_counts.sum()
840
+ threshold_idx = torch.searchsorted(
841
+ histogram_counts.cumsum(0), sparsity_level, side="right"
842
+ )
843
+
844
+ return bin_edges[threshold_idx]
845
+
846
+
847
+ def set_regularization_threshold(model, threshold: float = 0.1):
848
+ for i, layer in enumerate(model.model.layers):
849
+ if (
850
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
851
+ ): # Can set the threshold only the relevant statistics is collected.
852
+ layer.mlp.regularization_threshold = threshold # TODO: find better param
853
+
854
+
855
+ def set_sparse_threshold(model, sparsity_level: float, use_relu: bool = False):
856
+ for i, layer in enumerate(model.model.layers):
857
+ if (
858
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
859
+ ): # Can set the threshold only the relevant statistics is collected.
860
+ if use_relu:
861
+ layer.mlp.sparse_act_fn = nn.ReLU()
862
+ layer.mlp.use_relu = True
863
+ else:
864
+ layer.mlp.dead_threshold = get_threshold(
865
+ layer.mlp.histogram_bins,
866
+ layer.mlp.post_act_hist_counts,
867
+ sparsity_level,
868
+ )
869
+ layer.mlp.sparse_act_fn.set_new_threshold(layer.mlp.dead_threshold)
870
+ layer.mlp.regularization_threshold = (
871
+ layer.mlp.dead_threshold * 1.2
872
+ ) # TODO: find better param
873
+
874
+
875
+ def plot_histogram(
876
+ bin_edges,
877
+ histogram_counts: torch.tensor,
878
+ title: str = "Activation Distribution",
879
+ fig_dir: str = "figures",
880
+ ):
881
+ plt.bar(
882
+ bin_edges[:-1], histogram_counts, width=np.diff(bin_edges), edgecolor="black"
883
+ )
884
+ plt.title(title)
885
+ plt.xlabel("Activation Value")
886
+ plt.ylabel("Frequency")
887
+ os.makedirs(fig_dir, exist_ok=True)
888
+ plt.savefig(f"{fig_dir}/{title}.png")
889
+ # plt.show()
890
+ plt.clf()
891
+
892
+
893
+ def plot_act(model, fig_dir: str = "figures"):
894
+ for i, layer in enumerate(model.model.layers):
895
+ if (
896
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
897
+ ): # Can set the threshold only the relevant statistics is collected.
898
+ plot_title = f"Layer: {i} Pre-Activation Distribution"
899
+ plot_histogram(
900
+ layer.mlp.histogram_bins, layer.mlp.pre_act_hist_counts, plot_title
901
+ )
902
+
903
+ plot_title = f"Layer: {i} Post-Activation Absolute Distribution"
904
+ plot_histogram(
905
+ layer.mlp.histogram_bins, layer.mlp.post_act_hist_counts, plot_title
906
+ )
907
+
908
+
909
+ def save_act_hist(
910
+ model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
911
+ ):
912
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
913
+ act_dict = {}
914
+ for i, layer in enumerate(model.model.layers):
915
+ if (
916
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
917
+ ): # Can set the threshold only the relevant statistics is collected.
918
+ act_dict[i] = (
919
+ layer.mlp.histogram_bins,
920
+ layer.mlp.pre_act_hist_counts,
921
+ layer.mlp.post_act_hist_counts,
922
+ )
923
+ print("Saving activation histograms...\n\n\n")
924
+ torch.save(act_dict, filename)
925
+
926
+
927
+ def load_act_hist(
928
+ model, filename="/scr/jay/models/mistral/pre_finetune/cola_act_hist.pt"
929
+ ):
930
+ assert os.path.exists(
931
+ filename
932
+ ), f"{filename} does not exist when loading pre/post-activation histogram of SparseMistralSiluMLP."
933
+ print("Loading activation histograms...\n\n\n")
934
+
935
+ act_dict = torch.load(filename)
936
+ for i, layer in enumerate(model.model.layers):
937
+ if (
938
+ isinstance(layer.mlp, MistralSparseSiluMLP) and layer.mlp.is_stats
939
+ ): # Can set the threshold only the relevant statistics is collected.
940
+ (
941
+ layer.mlp.histogram_bins,
942
+ layer.mlp.pre_act_hist_counts,
943
+ layer.mlp.post_act_hist_counts,
944
+ ) = act_dict[i]
945
+
946
+
947
+ def enable_last_k_modules(model, start_module_idx: int):
948
+ assert 32 > start_module_idx >= 0
949
+ new_modules = []
950
+ new_idx = 0
951
+ for idx in range(start_module_idx, len(model.model.original_layers)):
952
+ module = model.model.original_layers[idx]
953
+ module.layer_idx = new_idx
954
+ module.self_attn.layer_idx = new_idx
955
+ new_modules.append(module)
956
+ new_idx += 1
957
+ print(module.layer_idx)
958
+
959
+ model.model.layers = nn.ModuleList(new_modules)
960
+
961
+
962
+ def enable_first_k_modules(model, end_module_idx: int):
963
+ assert 32 > end_module_idx >= 0
964
+ new_modules = []
965
+ new_idx = 0
966
+ for idx in range(0, end_module_idx + 1):
967
+ module = model.model.original_layers[idx]
968
+ module.layer_idx = new_idx
969
+ module.self_attn.layer_idx = new_idx
970
+ new_modules.append(module)
971
+ new_idx += 1
972
+ print(module.layer_idx)
973
+
974
+ model.model.layers = nn.ModuleList(new_modules)