shawgpt-ft / README.md
thomnis's picture
thomnis/Mistral-7B-Instruct-v0.2-GPTQ-LoRA-shawgpt-ft
a26d337 verified
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: shawgpt-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# shawgpt-ft
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 4.586 | 0.9231 | 3 | 4.0840 |
| 4.5013 | 1.8462 | 6 | 3.6804 |
| 3.4295 | 2.7692 | 9 | 2.6498 |
| 1.7662 | 4.0 | 13 | 1.7049 |
| 1.6274 | 4.9231 | 16 | 1.4525 |
| 1.3983 | 5.8462 | 19 | 1.3957 |
| 1.2807 | 6.7692 | 22 | 1.3583 |
| 0.9365 | 8.0 | 26 | 1.3325 |
| 1.1829 | 8.9231 | 29 | 1.3339 |
| 1.0945 | 9.8462 | 32 | 1.3330 |
| 1.0448 | 10.7692 | 35 | 1.3496 |
| 0.7014 | 12.0 | 39 | 1.3455 |
| 0.8887 | 12.9231 | 42 | 1.3879 |
| 0.8145 | 13.8462 | 45 | 1.4225 |
| 0.7586 | 14.7692 | 48 | 1.4449 |
| 0.5382 | 16.0 | 52 | 1.5154 |
| 0.6563 | 16.9231 | 55 | 1.4966 |
| 0.6154 | 17.8462 | 58 | 1.5442 |
| 0.4083 | 18.4615 | 60 | 1.5866 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1