thomas0104's picture
Update README.md
90a6f10
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - cer-char
  - cer-rome
model-index:
  - name: Whisper medium nan-tw
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 nan-tw
          type: mozilla-foundation/common_voice_11_0
          config: nan-tw
          split: train
          args: nan-tw
        metrics:
          - name: Cer-char
            type: cer
            value: 45.038167938931295
          - name: Cer-rome
            type: cer
            value: 31.56572704437622

Whisper medium nan-tw

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 nan-tw dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9100
  • Wer: 42.0709
  • Cer: 22.3681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0568 5.0 1000 0.7769 48.2706 26.0890
0.0057 10.0 2000 0.8438 44.0722 23.9270
0.0041 15.01 3000 0.8740 42.8540 22.9554
0.0001 20.01 4000 0.9041 42.1797 22.5496
0.0001 25.01 5000 0.9100 42.0709 22.3681

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.2