|
--- |
|
license: mit |
|
language: |
|
- ja |
|
base_model: xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
- massive |
|
- bert |
|
datasets: |
|
- AmazonScience/massive |
|
widget: |
|
- text: 明日の予定を教えて |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: xlm-roberta-base-finetuned-massive |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: massive |
|
type: massive |
|
config: ja-JP |
|
split: validation |
|
args: ja-JP |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8327594687653713 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8192120367052886 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-base-finetuned-massive |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7539 |
|
- Accuracy: 0.8328 |
|
- F1: 0.8192 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
model_name = "thkkvui/xlm-roberta-base-finetuned-massive" |
|
classifier = pipeline("text-classification", model=model_name) |
|
|
|
text = ["今日の天気を教えて", "ニュースある?", "予定をチェックして", "ドル円は?"] |
|
|
|
for t in text: |
|
output = classifier(t) |
|
print(output) |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 2.9836 | 0.69 | 500 | 1.6188 | 0.6257 | 0.5524 | |
|
| 1.4569 | 1.39 | 1000 | 1.0347 | 0.7575 | 0.7251 | |
|
| 1.0211 | 2.08 | 1500 | 0.8186 | 0.8205 | 0.8024 | |
|
| 0.7799 | 2.78 | 2000 | 0.7539 | 0.8328 | 0.8192 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|