metadata
license: mit
language:
- ja
tags:
- generated_from_trainer
- ja_qu_ad
- bert
datasets: SkelterLabsInc/JaQuAD
widget:
- text: どこへ出かけた?
context: 2015年9月1日、私は横浜へ車で出かけました。映画を観た後に中華街まで電車で行き、昼ご飯は重慶飯店で中華フルコースを食べました。
model-index:
- name: xlm-roberta-base-finetuned-JaQuAD
results: []
xlm-roberta-base-finetuned-JaQuAD
This model is a fine-tuned version of xlm-roberta-base on the JaQuAD dataset. It achieves the following results on the evaluation set:
- Loss: 0.7495
Model description
More information needed
Intended uses
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model_name = "thkkvui/xlm-roberta-base-finetuned-JaQuAD"
model = (AutoModelForQuestionAnswering.from_pretrained(model_name))
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = "2015年9月1日、私は横浜へ車で出かけました。映画を観た後に中華街まで電車で行き、昼ご飯は重慶飯店で中華フルコースを食べました。"
questions= ["どこへ出かけた?", "電車に乗る前は何をしていた?", "重慶飯店で何を食べた?", "いつ横浜に出かけた?"]
for question in questions:
inputs = tokenizer.encode_plus(question, text, add_special_tokens=True, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
answer_start = torch.argmax(output.start_logits)
answer_end = torch.argmax(output.end_logits)
answer_tokens = inputs.input_ids[0, answer_start : answer_end + 1]
answer = tokenizer.decode(answer_tokens)
print(f"質問: {question} -> 回答: {answer}")
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8661 | 1.0 | 1985 | 0.8036 |
0.5348 | 2.0 | 3970 | 0.7495 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1
- Datasets 2.13.1
- Tokenizers 0.13.3