thkkvui's picture
Update README.md
2a53f07
|
raw
history blame
3.28 kB
---
license: mit
language:
- ja
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
- bert
- zero-shot-classification
- text-classification
datasets:
- MoritzLaurer/multilingual-NLI-26lang-2mil7
- shunk031/JGLUE
metrics:
- accuracy
- f1
model-index:
- name: mDeBERTa-v3-base-finetuned-nli-jnli
results: []
pipeline_tag: zero-shot-classification
widget:
- text: 今日の予定を教えて
candidate_labels: 天気,ニュース,金融,予定
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mDeBERTa-v3-base-finetuned-nli-jnli
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7739
- Accuracy: 0.6808
- F1: 0.6742
## Model description
More information needed
## Intended uses & limitations
#### zero-shot classification
```python
from transformers import pipeline
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
classifier = pipeline("zero-shot-classification", model=model_name)
text = ["今日の天気を教えて", "ニュースある?", "予定をチェックして", "ドル円は?"]
labels = ["天気", "ニュース", "金融", "予定"]
for t in text:
output = classifier(t, labels, multi_label=False)
print(output)
```
#### NLI use-case
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "NY Yankees is the professional baseball team in America."
hypothesis = "メジャーリーグのチームは、日本ではニューヨークヤンキースが有名だ。"
inputs = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
preds = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
result = {name: round(float(pred) * 100, 1) for pred, name in zip(preds, label_names)}
print(result)
```
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| 0.753 | 0.53 | 5000 | 0.8758 | 0.6105 | 0.6192 |
| 0.5947 | 1.07 | 10000 | 0.6619 | 0.7054 | 0.7035 |
| 0.5791 | 1.6 | 15000 | 0.7739 | 0.6808 | 0.6742 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3