metadata
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.58 +/- 2.72
name: mean_reward
verified: false
Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
Usage
- Load model
from urllib.error import HTTPError
from huggingface_hub import hf_hub_download
def load_from_hub(repo_id: str, filename: str) -> str:
"""
Download a model from Hugging Face Hub.
:param repo_id: id of the model repository from the Hugging Face Hub
:param filename: name of the model zip file from the repository
"""
# Get the model from the Hub, download and cache the model on your local disk
pickle_model = hf_hub_download(
repo_id=repo_id,
filename=filename
)
with open(pickle_model, 'rb') as f:
downloaded_model_file = pickle.load(f)
return downloaded_model_file
- Evaluate model
model = load_from_hub(repo_id="thien1892/q-taxi-v3", filename="q-learning.pkl") # Try to use another model print(model) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])