CiceroASR / README.md
thiagolira's picture
Upload tokenizer
b81ce8f verified
|
raw
history blame
2.51 kB
metadata
language:
  - la
license: mit
tags:
  - generated_from_trainer
datasets:
  - thiagolira/LatinYoutube
metrics:
  - wer
base_model: facebook/w2v-bert-2.0
model-index:
  - name: CiceroASR
    results: []

CiceroASR

This model is a fine-tuned version of facebook/w2v-bert-2.0 for the transcription of Classical Latin!

Example from the Aeneid: Transcription: arma virumque cano (Of arms and men I sing)

Example from Genesis: Transcription (little error there): creavit deus chaelum et terram (In the beggining God created the heaven and the earth)

It achieves the following results on the evaluation set of my dataset Latin Youtube:

  • Loss: 0.5026
  • Wer: 0.1651

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9864 1.14 50 2.4639 1.0
0.7134 2.27 100 0.4891 0.3601
0.5196 3.41 150 0.5267 0.3022
0.3779 4.55 200 0.4407 0.2369
0.3818 5.68 250 0.4516 0.2360
0.3 6.82 300 0.4365 0.2379
0.3252 7.95 350 0.4238 0.2183
0.2736 9.09 400 0.4609 0.2034
0.1588 10.23 450 0.4007 0.2239
0.1223 11.36 500 0.4892 0.1987
0.0859 12.5 550 0.5393 0.1772
0.0575 13.64 600 0.4629 0.1744
0.0464 14.77 650 0.5026 0.1651

Framework versions

  • Transformers 4.38.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2