|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-cnn-finetuned-roundup-4-8 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-cnn-finetuned-roundup-4-8 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7790 |
|
- Rouge1: 54.3036 |
|
- Rouge2: 37.1443 |
|
- Rougel: 40.4762 |
|
- Rougelsum: 52.1796 |
|
- Gen Len: 142.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| |
|
| No log | 1.0 | 398 | 0.9580 | 52.5184 | 33.0208 | 35.0634 | 49.9083 | 142.0 | |
|
| 1.119 | 2.0 | 796 | 0.8356 | 53.0801 | 34.5549 | 36.9807 | 50.3394 | 141.2963 | |
|
| 0.6814 | 3.0 | 1194 | 0.7968 | 53.9433 | 34.8086 | 36.7654 | 51.3384 | 142.0 | |
|
| 0.4623 | 4.0 | 1592 | 0.7474 | 53.947 | 36.2662 | 39.332 | 51.7559 | 142.0 | |
|
| 0.4623 | 5.0 | 1990 | 0.7563 | 54.5816 | 37.0675 | 40.3592 | 52.2391 | 142.0 | |
|
| 0.3228 | 6.0 | 2388 | 0.7383 | 54.787 | 37.3647 | 40.521 | 52.3113 | 142.0 | |
|
| 0.2183 | 7.0 | 2786 | 0.7606 | 54.1822 | 37.6748 | 40.7956 | 52.1102 | 141.7778 | |
|
| 0.1759 | 8.0 | 3184 | 0.7790 | 54.3036 | 37.1443 | 40.4762 | 52.1796 | 142.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|