|
--- |
|
license: gpl-3.0 |
|
inference: true |
|
tags: |
|
- instance-segmentation |
|
- computer-vision |
|
- vision |
|
- yolo |
|
- yolov8 |
|
datasets: |
|
- detection-datasets/coco |
|
pipeline_tag: image-segmentation |
|
--- |
|
### How to use |
|
|
|
- Install yolov8: |
|
|
|
```bash |
|
pip install -U yolov8 |
|
``` |
|
|
|
- Load model and perform prediction: |
|
|
|
```python |
|
import yolov5 |
|
# load model |
|
model = yolov5.load('fcakyon/yolov5n-v7.0') |
|
|
|
# set model parameters |
|
model.conf = 0.25 # NMS confidence threshold |
|
model.iou = 0.45 # NMS IoU threshold |
|
model.agnostic = False # NMS class-agnostic |
|
model.multi_label = False # NMS multiple labels per box |
|
model.max_det = 1000 # maximum number of detections per image |
|
# set image |
|
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' |
|
# perform inference |
|
results = model(img) |
|
# inference with larger input size |
|
results = model(img, size=640) |
|
# inference with test time augmentation |
|
results = model(img, augment=True) |
|
# parse results |
|
predictions = results.pred[0] |
|
boxes = predictions[:, :4] # x1, y1, x2, y2 |
|
scores = predictions[:, 4] |
|
categories = predictions[:, 5] |
|
# show detection bounding boxes on image |
|
results.show() |
|
# save results into "results/" folder |
|
results.save(save_dir='results/') |
|
``` |
|
|
|
- Finetune the model on your custom dataset: |
|
|
|
```bash |
|
yolov5 train --img 640 --batch 16 --weights fcakyon/yolov5n-v7.0 --epochs 10 --device cuda:0 |
|
``` |