Tokenization fixed
Browse files- tokenization_nicheformer.py +45 -33
tokenization_nicheformer.py
CHANGED
|
@@ -277,61 +277,73 @@ class NicheformerTokenizer(PreTrainedTokenizer):
|
|
| 277 |
"""
|
| 278 |
if isinstance(data, ad.AnnData):
|
| 279 |
adata = data.copy()
|
| 280 |
-
|
| 281 |
-
print(f"modality dtype: {adata.obs['modality'].dtype}")
|
| 282 |
-
print(f"specie dtype: {adata.obs['specie'].dtype}")
|
| 283 |
-
print(f"assay dtype: {adata.obs['assay'].dtype}")
|
| 284 |
-
|
| 285 |
# Align with reference model if available
|
| 286 |
if hasattr(self, '_load_reference_model'):
|
| 287 |
reference_model = self._load_reference_model()
|
| 288 |
if reference_model is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
# Concatenate and then remove the reference
|
| 290 |
adata = ad.concat([reference_model, adata], join='outer', axis=0)
|
| 291 |
adata = adata[1:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
-
print("AFTER CONCATENATION")
|
| 294 |
-
print(f"modality dtype: {adata.obs['modality'].dtype}")
|
| 295 |
-
print(f"specie dtype: {adata.obs['specie'].dtype}")
|
| 296 |
-
print(f"assay dtype: {adata.obs['assay'].dtype}")
|
| 297 |
# Get gene expression data
|
| 298 |
X = adata.X
|
| 299 |
|
| 300 |
# Get metadata for special tokens
|
| 301 |
-
# Print column types
|
| 302 |
-
print("\nColumn types:")
|
| 303 |
-
if 'modality' in adata.obs.columns:
|
| 304 |
-
print(f"modality type: {type(adata.obs['modality'])} with dtype: {adata.obs['modality'].dtype}")
|
| 305 |
-
if 'specie' in adata.obs.columns:
|
| 306 |
-
print(f"specie type: {type(adata.obs['specie'])} with dtype: {adata.obs['specie'].dtype}")
|
| 307 |
-
if 'assay' in adata.obs.columns:
|
| 308 |
-
print(f"assay type: {type(adata.obs['assay'])} with dtype: {adata.obs['assay'].dtype}")
|
| 309 |
modality = adata.obs['modality'] if 'modality' in adata.obs.columns else None
|
| 310 |
species = adata.obs['specie'] if 'specie' in adata.obs.columns else None
|
| 311 |
technology = adata.obs['assay'] if 'assay' in adata.obs.columns else None
|
| 312 |
|
| 313 |
-
print(f"Modality: {modality}")
|
| 314 |
-
print(f"Species: {species}")
|
| 315 |
-
print(f"Technology: {technology}")
|
| 316 |
# Use integer values directly if available
|
| 317 |
-
if modality is not None
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
else:
|
| 320 |
-
modality_tokens =
|
| 321 |
|
| 322 |
-
if species is not None
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
else:
|
| 326 |
-
species_tokens =
|
| 327 |
-
print(f"Species tokens resort: {species_tokens}")
|
| 328 |
|
| 329 |
-
if technology is not None
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
else:
|
| 333 |
-
technology_tokens =
|
| 334 |
-
print(f"Technology tokens resort: {technology_tokens}")
|
| 335 |
else:
|
| 336 |
X = data
|
| 337 |
modality_tokens = None
|
|
|
|
| 277 |
"""
|
| 278 |
if isinstance(data, ad.AnnData):
|
| 279 |
adata = data.copy()
|
| 280 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
# Align with reference model if available
|
| 282 |
if hasattr(self, '_load_reference_model'):
|
| 283 |
reference_model = self._load_reference_model()
|
| 284 |
if reference_model is not None:
|
| 285 |
+
# Store original column types before concatenation
|
| 286 |
+
original_types = {}
|
| 287 |
+
for col in ['modality', 'specie', 'assay']:
|
| 288 |
+
if col in adata.obs.columns:
|
| 289 |
+
original_types[col] = adata.obs[col].dtype
|
| 290 |
+
|
| 291 |
# Concatenate and then remove the reference
|
| 292 |
adata = ad.concat([reference_model, adata], join='outer', axis=0)
|
| 293 |
adata = adata[1:]
|
| 294 |
+
|
| 295 |
+
# Restore original column types after concatenation
|
| 296 |
+
for col, dtype in original_types.items():
|
| 297 |
+
if col in adata.obs.columns:
|
| 298 |
+
try:
|
| 299 |
+
adata.obs[col] = adata.obs[col].astype(dtype)
|
| 300 |
+
except Exception as e:
|
| 301 |
+
print(f"Warning: Could not convert {col} back to {dtype}: {e}")
|
| 302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
# Get gene expression data
|
| 304 |
X = adata.X
|
| 305 |
|
| 306 |
# Get metadata for special tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
modality = adata.obs['modality'] if 'modality' in adata.obs.columns else None
|
| 308 |
species = adata.obs['specie'] if 'specie' in adata.obs.columns else None
|
| 309 |
technology = adata.obs['assay'] if 'assay' in adata.obs.columns else None
|
| 310 |
|
|
|
|
|
|
|
|
|
|
| 311 |
# Use integer values directly if available
|
| 312 |
+
if modality is not None:
|
| 313 |
+
try:
|
| 314 |
+
if pd.api.types.is_numeric_dtype(modality):
|
| 315 |
+
modality_tokens = modality.astype(int).tolist()
|
| 316 |
+
else:
|
| 317 |
+
modality_tokens = [self.modality_dict.get(m, self._vocabulary["[PAD]"]) for m in modality]
|
| 318 |
+
except Exception as e:
|
| 319 |
+
print(f"Warning: Error processing modality tokens: {e}")
|
| 320 |
+
modality_tokens = [self._vocabulary["[PAD]"]] * len(adata)
|
| 321 |
else:
|
| 322 |
+
modality_tokens = None
|
| 323 |
|
| 324 |
+
if species is not None:
|
| 325 |
+
try:
|
| 326 |
+
if pd.api.types.is_numeric_dtype(species):
|
| 327 |
+
species_tokens = species.astype(int).tolist()
|
| 328 |
+
else:
|
| 329 |
+
species_tokens = [self.species_dict.get(s, self._vocabulary["[PAD]"]) for s in species]
|
| 330 |
+
except Exception as e:
|
| 331 |
+
print(f"Warning: Error processing species tokens: {e}")
|
| 332 |
+
species_tokens = [self._vocabulary["[PAD]"]] * len(adata)
|
| 333 |
else:
|
| 334 |
+
species_tokens = None
|
|
|
|
| 335 |
|
| 336 |
+
if technology is not None:
|
| 337 |
+
try:
|
| 338 |
+
if pd.api.types.is_numeric_dtype(technology):
|
| 339 |
+
technology_tokens = technology.astype(int).tolist()
|
| 340 |
+
else:
|
| 341 |
+
technology_tokens = [self.technology_dict.get(t, self._vocabulary["[PAD]"]) for t in technology]
|
| 342 |
+
except Exception as e:
|
| 343 |
+
print(f"Warning: Error processing technology tokens: {e}")
|
| 344 |
+
technology_tokens = [self._vocabulary["[PAD]"]] * len(adata)
|
| 345 |
else:
|
| 346 |
+
technology_tokens = None
|
|
|
|
| 347 |
else:
|
| 348 |
X = data
|
| 349 |
modality_tokens = None
|