thegenerativegeneration's picture
Upload 13 files
137f54b verified
|
raw
history blame
8.35 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
base_model: intfloat/multilingual-e5-small
metrics:
  - accuracy
widget:
  - text: >-
      query: Sí, la próxima vez que vayas, cuenta conmigo. He querido salir y
      hacer más actividades en la naturaleza.
  - text: 'query: I''m man, I''m leaving now.'
  - text: 'query: Ja, forse possiamo fare un giro in bicicletta insieme.'
  - text: 'query: Mak saya suruh balik, jumpa lagi.'
  - text: 'query: İnanılmaz, bu harika! Bir ayı gördüğüne inanamıyorum!'
pipeline_tag: text-classification
inference: true

SetFit with intfloat/multilingual-e5-small

This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-small as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'query: Tja, måste dra nu, ses senare.'
  • 'query: Ispričavam se, moram sada otići.'
  • 'query: Przepraszam, muszę już iść.'
0
  • 'query: Sveiki, kā jums klājas?'
  • 'query: அதிர்ச்சிகரமானது, அது மிகவும் அருமையாக இருக்கிறது! நீ கரடியை பார்த்தது எனக்கு நம்பிக்கையே வரவில்லை!'
  • 'query: Ég hef það fínt, takk. Og þú?'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("query: I'm man, I'm leaving now.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 7.6965 31
Label Training Sample Count
0 902
1 910

Training Hyperparameters

  • batch_size: (16, 2)
  • num_epochs: (1, 16)
  • max_steps: -1
  • sampling_strategy: undersampling
  • body_learning_rate: (1e-05, 1e-05)
  • head_learning_rate: 0.001
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.1
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • run_name: multilingual-e5-small
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.3613 -
0.0005 50 0.3577 -
0.0010 100 0.3511 0.3413
0.0015 150 0.3372 -
0.0019 200 0.3447 0.3347
0.0024 250 0.3349 -
0.0029 300 0.3326 0.3224
0.0034 350 0.3372 -
0.0039 400 0.3185 0.3039
0.0044 450 0.2828 -
0.0049 500 0.3055 0.2774
0.0054 550 0.2594 -
0.0058 600 0.2779 0.2489
0.0063 650 0.2486 -
0.0068 700 0.2321 0.22
0.0073 750 0.1838 -
0.0078 800 0.1845 0.2075
0.0083 850 0.1899 -
0.0088 900 0.2147 0.2025
0.0093 950 0.1644 -
0.0097 1000 0.2019 0.1821
0.0102 1050 0.2309 -
0.0107 1100 0.2084 0.1784
0.0112 1150 0.1508 -
0.0117 1200 0.1064 0.1453
0.0122 1250 0.1376 -
0.0127 1300 0.0828 0.121
0.0132 1350 0.1628 -
0.0136 1400 0.1308 0.1018
0.0141 1450 0.0566 -
0.0146 1500 0.0953 0.0767
0.0151 1550 0.1607 -
0.0156 1600 0.1322 0.0625
0.0161 1650 0.0861 -
0.0166 1700 0.0926 0.0423
0.0171 1750 0.0338 -
0.0175 1800 0.1029 0.0344
0.0180 1850 0.0442 -
0.0185 1900 0.019 0.0256
0.0190 1950 0.0489 -
0.0195 2000 0.0675 0.0187

Framework Versions

  • Python: 3.10.11
  • SetFit: 1.0.3
  • Sentence Transformers: 2.7.0
  • Transformers: 4.39.0
  • PyTorch: 2.4.0
  • Datasets: 2.20.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}