metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: intfloat/multilingual-e5-small
metrics:
- accuracy
widget:
- text: >-
query: Sí, la próxima vez que vayas, cuenta conmigo. He querido salir y
hacer más actividades en la naturaleza.
- text: 'query: I''m man, I''m leaving now.'
- text: 'query: Ja, forse possiamo fare un giro in bicicletta insieme.'
- text: 'query: Mak saya suruh balik, jumpa lagi.'
- text: 'query: İnanılmaz, bu harika! Bir ayı gördüğüne inanamıyorum!'
pipeline_tag: text-classification
inference: true
SetFit with intfloat/multilingual-e5-small
This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-small as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: intfloat/multilingual-e5-small
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
0 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("query: I'm man, I'm leaving now.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 7.6965 | 31 |
Label | Training Sample Count |
---|---|
0 | 902 |
1 | 910 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (1e-05, 1e-05)
- head_learning_rate: 0.001
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.1
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- run_name: multilingual-e5-small
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.3613 | - |
0.0005 | 50 | 0.3577 | - |
0.0010 | 100 | 0.3511 | 0.3413 |
0.0015 | 150 | 0.3372 | - |
0.0019 | 200 | 0.3447 | 0.3347 |
0.0024 | 250 | 0.3349 | - |
0.0029 | 300 | 0.3326 | 0.3224 |
0.0034 | 350 | 0.3372 | - |
0.0039 | 400 | 0.3185 | 0.3039 |
0.0044 | 450 | 0.2828 | - |
0.0049 | 500 | 0.3055 | 0.2774 |
0.0054 | 550 | 0.2594 | - |
0.0058 | 600 | 0.2779 | 0.2489 |
0.0063 | 650 | 0.2486 | - |
0.0068 | 700 | 0.2321 | 0.22 |
0.0073 | 750 | 0.1838 | - |
0.0078 | 800 | 0.1845 | 0.2075 |
0.0083 | 850 | 0.1899 | - |
0.0088 | 900 | 0.2147 | 0.2025 |
0.0093 | 950 | 0.1644 | - |
0.0097 | 1000 | 0.2019 | 0.1821 |
0.0102 | 1050 | 0.2309 | - |
0.0107 | 1100 | 0.2084 | 0.1784 |
0.0112 | 1150 | 0.1508 | - |
0.0117 | 1200 | 0.1064 | 0.1453 |
0.0122 | 1250 | 0.1376 | - |
0.0127 | 1300 | 0.0828 | 0.121 |
0.0132 | 1350 | 0.1628 | - |
0.0136 | 1400 | 0.1308 | 0.1018 |
0.0141 | 1450 | 0.0566 | - |
0.0146 | 1500 | 0.0953 | 0.0767 |
0.0151 | 1550 | 0.1607 | - |
0.0156 | 1600 | 0.1322 | 0.0625 |
0.0161 | 1650 | 0.0861 | - |
0.0166 | 1700 | 0.0926 | 0.0423 |
0.0171 | 1750 | 0.0338 | - |
0.0175 | 1800 | 0.1029 | 0.0344 |
0.0180 | 1850 | 0.0442 | - |
0.0185 | 1900 | 0.019 | 0.0256 |
0.0190 | 1950 | 0.0489 | - |
0.0195 | 2000 | 0.0675 | 0.0187 |
Framework Versions
- Python: 3.10.11
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.39.0
- PyTorch: 2.4.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}