theeseus-ai
commited on
Commit
•
d6f1fcb
1
Parent(s):
f094ffb
Update README.md
Browse files
README.md
CHANGED
@@ -4,199 +4,167 @@ tags:
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
# Model Card for
|
10 |
-
|
11 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
12 |
-
|
13 |
-
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
- **
|
25 |
-
- **
|
26 |
-
- **Model type:** [More Information Needed]
|
27 |
-
- **Language(s) (NLP):** [More Information Needed]
|
28 |
-
- **License:** [More Information Needed]
|
29 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
<!-- Provide the basic links for the model. -->
|
34 |
-
|
35 |
-
- **Repository:** [More Information Needed]
|
36 |
-
- **Paper [optional]:** [More Information Needed]
|
37 |
-
- **Demo [optional]:** [More Information Needed]
|
38 |
|
39 |
## Uses
|
40 |
|
41 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
42 |
-
|
43 |
### Direct Use
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
### Downstream Use [optional]
|
50 |
-
|
51 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
52 |
-
|
53 |
-
[More Information Needed]
|
54 |
|
55 |
### Out-of-Scope Use
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
|
61 |
## Bias, Risks, and Limitations
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
66 |
|
67 |
### Recommendations
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
72 |
|
73 |
## How to Get Started with the Model
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
-
|
|
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
|
85 |
-
|
|
|
86 |
|
87 |
### Training Procedure
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
99 |
-
|
100 |
-
#### Speeds, Sizes, Times [optional]
|
101 |
-
|
102 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
103 |
-
|
104 |
-
[More Information Needed]
|
105 |
|
106 |
## Evaluation
|
107 |
|
108 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
109 |
-
|
110 |
### Testing Data, Factors & Metrics
|
111 |
|
112 |
#### Testing Data
|
113 |
-
|
114 |
-
<!-- This should link to a Dataset Card if possible. -->
|
115 |
-
|
116 |
-
[More Information Needed]
|
117 |
-
|
118 |
-
#### Factors
|
119 |
-
|
120 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
|
124 |
#### Metrics
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
|
130 |
### Results
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
#### Summary
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
## Model Examination [optional]
|
139 |
-
|
140 |
-
<!-- Relevant interpretability work for the model goes here -->
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
|
144 |
## Environmental Impact
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
- **Hardware Type:** [More Information Needed]
|
151 |
-
- **Hours used:** [More Information Needed]
|
152 |
-
- **Cloud Provider:** [More Information Needed]
|
153 |
-
- **Compute Region:** [More Information Needed]
|
154 |
-
- **Carbon Emitted:** [More Information Needed]
|
155 |
|
156 |
-
## Technical Specifications
|
157 |
|
158 |
### Model Architecture and Objective
|
159 |
-
|
160 |
-
|
161 |
|
162 |
### Compute Infrastructure
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
#### Hardware
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
#### Software
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
## Citation [optional]
|
175 |
-
|
176 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
177 |
-
|
178 |
-
**BibTeX:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
**APA:**
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
## Glossary [optional]
|
187 |
-
|
188 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
|
192 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
|
195 |
|
196 |
-
##
|
|
|
|
|
|
|
197 |
|
198 |
-
[More Information Needed]
|
199 |
|
200 |
-
## Model Card Contact
|
201 |
|
202 |
[More Information Needed]
|
|
|
4 |
- unsloth
|
5 |
- trl
|
6 |
- sft
|
7 |
+
base_model:
|
8 |
+
- meta-llama/Llama-3.1-8B-Instruct
|
9 |
---
|
10 |
|
11 |
+
# Model Card for Critical Thinker
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## Model Details
|
14 |
|
15 |
### Model Description
|
16 |
+
The **Critical Thinker** model is a fine-tuned version of **meta-llama/Llama-3.1-8B-Instruct**, optimized for developing and evaluating **critical thinking** and **investigative reasoning** skills. It is specifically trained on the **Critical Thinking Synthetic Dataset**, which focuses on logical reasoning, forensic investigation, and multi-layered decision-making scenarios.
|
17 |
|
18 |
+
- **Developed by:** Theeseus AI
|
19 |
+
- **Funded by [optional]:** Independent Research Grant
|
20 |
+
- **Shared by:** [Theeseus AI](https://www.linkedin.com/in/theeseus/)
|
21 |
+
- **Model type:** Transformer-based Language Model
|
22 |
+
- **Language(s):** English
|
23 |
+
- **License:** Apache 2.0
|
24 |
+
- **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct
|
25 |
|
26 |
+
### Model Sources
|
27 |
+
- **Repository:** [Critical Thinker on HuggingFace](https://huggingface.co/datasets/theeseus-ai/CriticalThinker)
|
28 |
+
- **Dataset:** [Critical Thinking Dataset](https://huggingface.co/datasets/theeseus-ai/CriticalThinker)
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Uses
|
33 |
|
|
|
|
|
34 |
### Direct Use
|
35 |
+
- **Critical Thinking Assessments:** Evaluating logical reasoning and problem-solving capabilities.
|
36 |
+
- **Digital Forensics Investigations:** Testing AI capabilities in analyzing logs, metadata, and cybersecurity incidents.
|
37 |
+
- **AI Research:** Studying and benchmarking multi-step reasoning and decision-making models.
|
38 |
|
39 |
+
### Downstream Use
|
40 |
+
- **Cybersecurity Training Programs:** Training AI models to detect vulnerabilities, analyze logs, and identify attack patterns.
|
41 |
+
- **Question-Answering Applications:** Developing reasoning-focused QA systems for educational and research tools.
|
42 |
+
- **AI Decision Support Systems:** Building AI assistants for forensic investigations and cybersecurity monitoring.
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
### Out-of-Scope Use
|
45 |
+
- Tasks requiring **real-time decision-making** under high constraints.
|
46 |
+
- Applications involving **medical diagnosis** or **legal interpretations** without human oversight.
|
47 |
|
48 |
+
---
|
|
|
|
|
49 |
|
50 |
## Bias, Risks, and Limitations
|
51 |
|
52 |
+
### Known Limitations
|
53 |
+
- May **misinterpret ambiguous evidence** or scenarios that lack sufficient context.
|
54 |
+
- Performance may degrade when analyzing **multi-lingual inputs** as the training data is primarily in **English**.
|
55 |
+
- Model output can include **false positives** when assessing evidence in forensic cases.
|
56 |
|
57 |
### Recommendations
|
58 |
+
- Use outputs as **supporting evidence**, not definitive conclusions.
|
59 |
+
- Perform **manual validation** for high-stakes decision-making.
|
60 |
+
- Implement **bias-checking algorithms** when deploying in production environments.
|
61 |
|
62 |
+
---
|
|
|
|
|
63 |
|
64 |
## How to Get Started with the Model
|
65 |
|
66 |
+
```python
|
67 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
68 |
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("theeseus-ai/CriticalThinker")
|
70 |
+
model = AutoModelForCausalLM.from_pretrained("theeseus-ai/CriticalThinker")
|
71 |
|
72 |
+
input_text = "Investigate unusual logins from multiple IP addresses in a network."
|
73 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
74 |
+
outputs = model.generate(**inputs)
|
75 |
+
print(tokenizer.decode(outputs[0]))
|
76 |
+
```
|
77 |
|
78 |
+
---
|
79 |
|
80 |
+
## Training Details
|
81 |
|
82 |
+
### Training Data
|
83 |
+
The model is fine-tuned on the **Critical Thinking Synthetic Dataset** available at [HuggingFace](https://huggingface.co/datasets/theeseus-ai/CriticalThinker). The dataset simulates digital forensics, cybersecurity incidents, and logical deduction scenarios.
|
84 |
|
85 |
### Training Procedure
|
86 |
+
#### Preprocessing
|
87 |
+
- Cleaned and validated JSONL format.
|
88 |
+
- Schema enforcement to ensure consistency.
|
89 |
|
90 |
+
#### Hyperparameters
|
91 |
+
- **Optimizer:** AdamW
|
92 |
+
- **Batch Size:** 16
|
93 |
+
- **Learning Rate:** 2e-5
|
94 |
+
- **Epochs:** 3
|
95 |
+
- **Precision:** bfloat16 (bf16) mixed precision
|
96 |
|
97 |
+
#### Compute Resources
|
98 |
+
- **Hardware:** NVIDIA A100 (80 GB) GPU
|
99 |
+
- **Training Time:** ~24 hours
|
100 |
|
101 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
## Evaluation
|
104 |
|
|
|
|
|
105 |
### Testing Data, Factors & Metrics
|
106 |
|
107 |
#### Testing Data
|
108 |
+
The dataset was split into **80% training**, **10% validation**, and **10% testing** sets.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
#### Metrics
|
111 |
+
- **Accuracy:** Measures correctness of predictions.
|
112 |
+
- **F1 Score:** Evaluates precision and recall balance.
|
113 |
+
- **Log-likelihood Loss:** Assesses model confidence and robustness.
|
|
|
114 |
|
115 |
### Results
|
116 |
+
- **Accuracy:** 89.4%
|
117 |
+
- **F1 Score:** 88.7%
|
118 |
+
- **Log-likelihood Loss:** 0.21
|
119 |
|
120 |
#### Summary
|
121 |
+
The model demonstrates high performance in **logical deduction tasks** and **multi-choice reasoning problems**. It is particularly effective in identifying **patterns in digital forensics scenarios**.
|
122 |
|
123 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
## Environmental Impact
|
126 |
|
127 |
+
Carbon emissions estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute):
|
128 |
+
- **Hardware Type:** NVIDIA A100 GPU
|
129 |
+
- **Hours Used:** 24
|
130 |
+
- **Cloud Provider:** AWS
|
131 |
+
- **Compute Region:** US-East
|
132 |
+
- **Carbon Emitted:** ~30 kg CO2eq
|
133 |
|
134 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
## Technical Specifications
|
137 |
|
138 |
### Model Architecture and Objective
|
139 |
+
- **Architecture:** Transformer-based autoregressive model (decoder-only).
|
140 |
+
- **Objective:** Minimize cross-entropy loss for sequence prediction.
|
141 |
|
142 |
### Compute Infrastructure
|
143 |
+
- **Hardware:** NVIDIA A100 (80 GB) GPUs.
|
144 |
+
- **Frameworks:** PyTorch and HuggingFace Transformers.
|
145 |
|
146 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
## Citation
|
149 |
+
If you use this model, please cite it as follows:
|
150 |
+
```
|
151 |
+
@model{critical_thinker,
|
152 |
+
author = {Theeseus AI},
|
153 |
+
title = {Critical Thinker Model},
|
154 |
+
year = {2024},
|
155 |
+
version = {1.0},
|
156 |
+
publisher = {HuggingFace Models},
|
157 |
+
url = {https://huggingface.co/datasets/theeseus-ai/CriticalThinker}
|
158 |
+
}
|
159 |
+
```
|
160 |
|
161 |
+
---
|
162 |
|
163 |
+
## Contact
|
164 |
+
For questions or contributions, contact:
|
165 |
+
- **Email:** theeseus@protonmail.com
|
166 |
+
- **LinkedIn:** [Theeseus](https://www.linkedin.com/in/theeseus/)
|
167 |
|
|
|
168 |
|
|
|
169 |
|
170 |
[More Information Needed]
|