metadata
license: mit
language:
- en
- zh
- de
- fr
- ja
- ko
- es
widget:
- text: Hi assistant How can I help you
- text: Guten Morgen! Wie kann ich Ihnen helfen?
- text: >-
どうすれば運動を続けられますか?
運動を続けることは、健康的な生活を維持する上で非常に重要ですが、モチベーションを維持することが難しい場合があります。以下にいくつかの方法を紹介します。
- text: >-
세계 1차 대전은 1914년부터 1918년까지 전 세계적으로 벌어진 대규모 전쟁입니다. 주요한 참전국으로는 독일, 오스트리아-헝가리
제국, 영국, 프랑스, 러시아, 이탈리아, 미국 등이 있었습니다.
- text: こんにちは!お元気ですか?何かお手伝いできることがありますか?
- text: user: Python 和 C++ 哪个更好学?哪个更强大?我该怎么选择?
- text: >-
在大熱天裡,墨鏡的銷售與冰淇淋的銷售有著高度相關性。當天氣很熱的時候,兩個都十分熱賣,而天氣轉涼以後兩者的銷售就底落谷底。當有一天,墨鏡批發商車輛在上班途中拋錨,因此無法開業,導致墨鏡銷售變
0 。請問當天冰淇淋的銷售如何?
- text: >-
user: Good morning\n assistant: Good morning! How can I assist you
today?
pipeline_tag: text2text-generation
tags:
- text-generation-inference
Generate title for conversation
How to use
model_name = "theblackcat102/alpaca-title-generator-mt0-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
question = 'Hi\nHow can I help you?'
encodes = tokenizer(question, return_tensors='pt')
outputs = model.generate(encodes.input_ids,
max_length=512,
do_sample=True,
repetition_penalty=1.2,
top_k=50,
num_return_sequences=1,
early_stopping=True
)
for i, beam_output in enumerate(outputs):
print('-----')
print("{}".format(tokenizer.decode(beam_output, skip_special_tokens=True)))
# > Help requested.
Generate title data
data was generated using response pair from yahma/alpaca-cleaned
and use openai turbo model for title.
""
user: {}
assistant: {}
""
Generate a very short title within 5 words of the conversation above, title must be as relevant as possible. Title language must be same as the context
TITLE: